首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The increasing penetration of power electronics in electrical equipment entails a significant impact on the deterioration of power supply quality. In this paper, the problem of power quality is addressed for distorted three‐phase four‐wire power grids supplying non‐linear unbalanced loads. A unified power quality conditioner (UPQC) is considered to ensure satisfactory electrical energy quality. To this end, a UPQC controller is designed to meet four control objectives: i) compensation of the harmonics and the reactive load currents; ii) compensation for the harmonic voltages at the point of common coupling (PCC); iii) cancelation of the neutral current; iv) and regulation of the inverter DC voltage. The control design relies on the UPQC nonlinear model that accounts for the electrical grid line impedance. Unlike previous works, the proposed controller features an output‐feedback nature as it combines a nonlinear regulator, designed with a sliding‐mode technique, and a state observer designed using a Lyapunov stability based technique. The latter provides the former with online estimates of the series filter AC voltages, which are not assumed to be accessible to measurements. The closed loop error system is analyzed using the average stability approach. It turns out that all (tracking and estimation) errors are asymptotically vanishing, except for the DC bus voltage tracking error, which is periodic in steady‐state with an amplitude depending on the (DC bus) capacitor, the larger the capacitor the smaller the steady‐state DC voltage tracking error level. This theoretical result is confirmed by simulations involving wide range variations of the load current.  相似文献   

2.
In this work, we consider the problem of controlling a single‐phase on‐board battery electric vehicle (BEV) charger with vehicle‐to‐grid (V2G) technology. The BEV charger consists of a bidirectional ac‐dc power converter connected to the single‐phase power grid, followed by a bidirectional dc‐dc power converter interfacing an EV battery pack. The main control objectives are fourfold: (i) Unitary Power Factor (UPF) in grid‐side; (ii) tight dc‐bus voltage regulation; (iii) safety battery charge and battery discharge during the grid‐to‐vehicle (G2V) mode and V2G mode, respectively; and (iv) asymptotic stability of the closed loop system. After an accurate system modelling, a nonlinear controller is designed using a backstepping design technique. The point is that the battery inner voltage is not accessible to measurement. Therefore, a nonlinear observer is invoked in order to estimate all non‐measured variables making the solution cheaper and noiseless. It is shown using a formal analysis and numerical simulations, that the proposed output feedback controller (combining a nonlinear controller and a nonlinear observer) meets all control objectives.  相似文献   

3.
The output voltage regulation problem of a DC‐DC buck converter is investigated in this paper via an observer‐based finite‐time output‐feedback control approach. Considering the effects of unknown load variations and the case without current sensor, by using the technique of adding a power integrator and the idea of nonseparation principle, a finite‐time voltage regulation control algorithm via dynamic output feedback is designed. The main feature of the designed observer and controller does not need any load's information. Theoretically, it is proven that the output voltage can reach the desired voltage in a finite time under the proposed controller. The effectiveness of the proposed control method is illustrated by numerical simulations and experimental results.  相似文献   

4.
We consider the output feedback event‐triggered control of an off‐grid voltage source inverter (VSI) with unknown inductance‐capacitance (L ? C) filter dynamics and connected load in the presence of an input disturbance acting at the inverter. Due to uncertain dynamics and unmodeled parameters in the L ? C filter connected to the VSI, we use an adaptive observer to reconstruct the system's states by measuring only the voltage at the output. The control mechanism is constructed based on an impulsive actor/critic framework that approximates the cost, the event‐triggered controller, and the worst case disturbance and generates the desired AC output with the least energy dissipation. We provide rigorous stability proofs and illustrate the applicability of our results through a simulation example.  相似文献   

5.
This paper presents a comparison study of different control schemes for grid‐connected three phase two‐level power converters. All control strategies adopt the double‐loop control structure which consists of voltage regulation loop and instantaneous power tracking loop. In the external loop, voltage regulation loop, PI, fuzzy PI, adaptive controllers and PI controller plus extended state observer (ESO) are utilized to regulate the output voltage. The merits, drawbacks and design procedures of four methods are compared, investigated and analyzed. The second order sliding mode (SOSM) controllers are applied into the internal loop, instantaneous power tracking loop, to drive the active power and reactive power tracking their set points. The performance differences of these control strategies are compared through the real simulation.  相似文献   

6.
This paper addresses the problem of controlling grid connected photovoltaic (PV) systems that are driven with microinverters. The systems to be controlled consist of a solar panel, a boost dc–dc converter, a DC link capacitor, a single‐phase full‐bridge inverter, a filter inductor, and an isolation transformer. We seek controllers that are able to simultaneously achieve four control objectives, namely: (i) asymptotic stability of the closed loop control system; (ii) maximum power point tracking (MPPT) of the PV module; (iii) tight regulation of the DC bus voltage; and (iv) unity power factor (PF) in the grid. To achieve these objectives, a new multiloop nonlinear controller is designed using the backstepping design technique. A key feature of the control design is that it relies on an averaged nonlinear system model accounting, on the one hand, for the nonlinear dynamics of the underlying boost converter and inverter and, on the other, for the nonlinear characteristic of the PV panel. To achieve the MPPT objective, a power optimizer is designed that computes online the optimal PV panel voltage used as a reference signal by the PV voltage regulator. It is formally shown that the proposed controller meets all the objectives. This theoretical result is confirmed by numerical simulation tests.  相似文献   

7.
Abstract— A high‐performance high‐efficiency LED‐backlight driving system for liquid‐crystal‐display panels is presented. The proposed LED‐backlight driving system is composed of a high‐efficiency DC‐DC converter capable of operating over a universal AC input voltage (75–265 V) and a high‐performance LED‐backlight sector‐dimming controller. The high efficiency of the system is achieved by using an asymmetrical half‐bridge DC‐DC converter that utilizes a new voltage‐driven synchronous rectifier and an LED‐backlight sector‐dimming controller. This controller regulates current using lossless power semiconductor switches (MOSFETs). The power semiconductor switches of the proposed DC‐DC converter, including the synchronous rectifier switch, operate with zero voltage, achieving high efficiency and low switch voltage stress using the asymmetrical‐PWM and synchronous rectifier techniques. To achieve high performance, the proposed driving system performs the sector dimming and the current regulation using low‐cost microcontrollers and MOSFET switching, resulting in high contrast and brightness. A100‐W laboratory prototype was built and tested. The experimental results verify the feasibility of the proposed system.  相似文献   

8.
A saliency back‐EMF estimator with a proportional–integral–derivative neural network (PIDNN) torque observer is proposed in this study to improve the speed estimating performance of a sensorless interior permanent magnet synchronous motor (IPMSM) drive system for an inverter‐fed compressor. The PIDNN torque observer is proposed to replace the conventional proportional–integral–derivative (PID) torque observer in a saliency back‐EMF estimator to improve the estimating performance of the rotor flux angle and speed. The proposed sensorless control scheme use square‐wave type voltage injection method as the start‐up strategy to achieve sinusoidal starting. When the motor speed gradually increases to a preset speed, the sensorless drive will switch to the conventional saliency back‐EMF estimator using the PID observer or the proposed saliency back‐EMF estimator using the PIDNN observer for medium and high speed control. The theories of the proposed saliency back‐EMF rotor flux angle and speed estimation method are introduced in detail. Moreover, the network structure, the online learning algorithms and the convergence analyses of the PIDNN are discussed. Furthermore, a DSP‐based control system is developed to implement the sensorless inverter‐fed compressor drive system. Finally, some experimental results are given to verify the feasibility of the proposed estimator.  相似文献   

9.
The problem of controlling induction motors, together with associated AC/DC rectifiers and DC/AC inverters, is addressed. The control objectives are threefold: (i) the motor speed should track any reference signal despite mechanical parameter uncertainties and variations; (ii) the DC Link voltage must be tightly regulated; and (iii) the power factor correction (PFC) w.r.t. the power supply net must be performed in a satisfactory way. First, a nonlinear model of the whole controlled system is developed within the Park coordinates. Then, a multi‐loop nonlinear adaptive controller is synthesized using the backstepping design technique. A formal analysis based on Lyapunov stability and average theory is carried out to exhibit the control system performances. In addition to closed‐loop global asymptotic stability, it is proven that all control objectives (motor speed tracking, rotor flux regulation, DC link voltage regulation and unitary power factor) are asymptotically achieved, up to small but unavoidable harmonic errors (ripples).  相似文献   

10.
基于双PWM结构,根据系统能量流动分析系统在能量平衡状态和能量不平衡状态下系统各部分间的能量关系,并建立双PWM结构能量数学模型;针对系统输出能量与消耗能量不平衡时造成的直流母线电压波动以及输出功率不匹配的问题,建立关于直流母线电压以及网侧电流d轴分量的约束条件,保证系统能量能够平滑变化;采用约束条件对整流器电压外环以及功率内环进行修正,用以实现整流侧输出能量与逆变侧消耗能量的快速平衡,达到双PWM结构间协调控制的目的;根据仿真结果表明,系统在电机功率突变时,能够实现能量的快速平衡,并且能够减少直流母线电压波动,减少网侧谐波分量和直流侧电容。  相似文献   

11.
随着直流微电网技术的快速发展,直流微电网中母线电压的稳定性控制作为直流微电网正常平稳运行的关键,也成为了研究热点之一;针对直流微电网母线电压外环易受参数摄动和负荷扰动的影响,提出了一种扩张状态扰动观测器ESO(Extend state observer)与新型趋近律的滑模控制器NRSMC(New reaching law sliding mode control)相结合的复合控制器ESO-NRSMC;该控制器采用了一种新型趋近律方法来解决抖振现象与滑模面趋近时间之间的矛盾;同时扩张状态观测器将观测到的扰动值补偿到滑模控制器中,进一步提高控制器的抗扰动能力;还构造了Lyapunov函数来验证所设计的母线电压外环闭环控制系统的稳定性;最后通过仿真证明控制器ESO-NRSMC在微电网系统参数发生变化以及负载扰动的情况下,依然能够实现对直流微电网母线电压的稳定控制,具有较强的优越性和鲁棒性能。  相似文献   

12.
This paper addresses the problem of regulating the output voltage of a DC‐DC buck‐boost converter feeding a constant power load, which is a problem of current practical interest. Designing a stabilising controller is theoretically challenging because its average model is a bilinear second order system that, due to the presence of the constant power load, is non‐minimum phase with respect to both states. Moreover, to design a high‐performance controller, the knowledge of the extracted load power, which is difficult to measure in industrial applications, is required. In this paper, an adaptive interconnection and damping assignment passivity‐based control—that incorporates the immersion and invariance parameter estimator for the load power—is proposed to solve the problem. Some detailed simulations are provided to validate the transient behaviour of the proposed controller and compare it with the performance of a classical PD scheme.  相似文献   

13.
This paper focuses on the problem of adaptive output feedback fault tolerant control for a nonlinear hydro‐turbine governing system. A dynamic mathematical model of the system is established, which aims to investigate the dynamic performance of the model under servomotor delay and actuator faults. Then, a fault estimation adaptive observer is proposed to achieve online real‐time diagnosis of system faults. Based on the online fault estimation information, an observer‐based adaptive output feedback fault tolerant controller is designed. Furthermore, under reasonable assumptions, the results demonstrate that the closed‐loop control system can achieve global asymptotic stability by Lyapunov function. Finally, the numerical simulation results are presented to indicate the satisfaction control effectiveness of the proposed scheme.  相似文献   

14.
This paper deals with the problem of controlling energy generation systems including fuel cells (FCs) and interleaved boost power converters. The proposed nonlinear adaptive controller is designed using sliding mode control (SMC) technique based on the system nonlinear model. The latter accounts for the boost converter large-signal dynamics as well as for the fuel-cell nonlinear characteristics. The adaptive nonlinear controller involves online estimation of the DC bus impedance ‘seen’ by the converter. The control objective is threefold: (i) asymptotic stability of the closed loop system, (ii) output voltage regulation under bus impedance uncertainties and (iii) equal current sharing between modules. It is formally shown, using theoretical analysis and simulations, that the developed adaptive controller actually meets its control objectives.  相似文献   

15.
This paper studies the problem of using a sampled‐data output feedback controller to globally stabilize a class of nonlinear systems with uncertain measurement and control gains. A reduced‐order observer and a linear output control law, both in the sampled‐data form, are designed without the precise knowledge of the measurement and control gains except for their bounds. The observer gains are chosen recursively in a delicate manner by utilizing the output feedback domination approach. The allowable sampling period is determined by estimating and restraining the growth of the system states under a zero‐order‐hold input with the help of the Gronwall–Bellman Inequality. A DC–DC buck power converter as a real‐life example will be shown by numerical simulations to demonstrate the effectiveness of the proposed control method.  相似文献   

16.
This paper investigates the problem of output feedback control for a class of stochastic nonlinear systems with time‐delays. Using dynamic gain scaling technique, an adaptive update law is introduced to the observer and controller to deal with the unknown parameters. Based on the Lyapunov‐Krasovskii functional and stochastic Barbalat's lemma, it is proved that the proposed universal‐type adaptive output feedback controller can regulate all the states of the closed‐loop system almost surely. A simulation example is presented to illustrate the effectiveness of the proposed design procedure.  相似文献   

17.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a new observer‐based controller is proposed for a photovoltaic DC – DC buck converter; both photovoltaic (PV) voltage and current regulation are considered. In order to deal with the complex and nonlinear PV mathematical model and adapt it to the control purpose, a hybrid PV current observer model is proposed; three modes are defined and the stability of the observer is discussed using the hybrid dynamical system approach (HDS). The observer‐based controller is designed for both voltage and current regulation of the PV system; the closed loop of the full system stability is demonstrated through Lyapunov analysis. Experimental results are also presented showing the feasibility of the proposed observer‐based controller.  相似文献   

19.
In this paper, the decentralized adaptive neural network (NN) output‐feedback stabilization problem is investigated for a class of large‐scale stochastic nonlinear strict‐feedback systems, which interact through their outputs. The nonlinear interconnections are assumed to be bounded by some unknown nonlinear functions of the system outputs. In each subsystem, only a NN is employed to compensate for all unknown upper bounding functions, which depend on its own output. Therefore, the controller design for each subsystem only need its own information and is more simplified than the existing results. It is shown that, based on the backstepping method and the technique of nonlinear observer design, the whole closed‐loop system can be proved to be stable in probability by constructing an overall state‐quartic and parameter‐quadratic Lyapunov function. The simulation results demonstrate the effectiveness of the proposed control scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper studies the problem of fault estimation and accommodation for a class of nonlinear time‐varying delay systems using adaptive fault diagnosis observer (AFDO). A novel fast adaptive fault estimation algorithm that does not need the derivative of the output vector is proposed to enhance the performance of fault estimation. Meanwhile, a delay‐dependent criteria is obtained based on free weighting matrix method with the purpose of reducing the conservatism of the AFDO design. On the basis of fault estimation, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of matrix inequality, we derive sufficient conditions for the existence of the adaptive observer and fault‐tolerant controller. Simulation results are presented to illustrate the efficiency of the proposed method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号