首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an adaptive neural network control system is developed for a nonlinear three‐dimensional Euler‐Bernoulli beam with unknown control direction. The Euler‐Bernoulli beam is modeled as a combination of partial differential equations (PDEs) and ordinary differential equations (ODEs). Adaptive radial basis function–based neural network control laws are designed to determine approximation of disturbances. A projection mapping operator is adopted to realize bounded approximation of disturbances. A Nussbaum function is introduced to compensate for the unknown control direction. The goal of this study is to suppress the vibrations of the Euler‐Bernoulli beam in three‐dimensional space. In addition, unknown control direction problem and bounded disturbances are considered to guarantee that the signals of the system are uniformly bounded. Numerical simulations demonstrate the effectiveness of the proposed method.  相似文献   

2.
In this paper, we investigate an Euler‐Bernoulli system with input delay in the boundary control. Suppose that there is no delay in observation, y(t), of the system, and a partial input delay in the boundary control. The collocated boundary feedback control law u(t) = αy(t) + βy(t ? τ) is applied to obtain the closed loop system. By spectral analysis and Lyapunov method, we show that: when α>|β|, the closed loop system is exponentially stable for any τ>0; when α<|β|, the system is unstable for any τ>0; when α = |β|, the system is asymptotically stable for almost all τ>0. Finally, we provide numerical simulations to show the spectral distribution for different values of α and β. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
This paper is concerned with the boundary feedback stabilization for a Timoshenko beam with external disturbances in the boundary inputs. Based on the idea of active disturbance rejection controls, extended state observers with the time‐varying gains are designed to estimate disturbances and then a control strategy is presented by canceling the disturbances via the feedback channels. The well‐posedness of the resulting closed‐loop system is proved by the dual theory and admissibility theory, and the relationship between the stability and the disturbance is interpreted by Lyapunov's second method. At the end, the numerical experiment illustrate the effectiveness of the proposed control strategy.  相似文献   

4.
The paper presents a control method for disturbance attenuation of a rotating flexible beam using strain feedback. It is shown that the strain feedback, if appropriately used, can increase the stiffness of the flexible beam and, thus, attenuate external disturbances. The disturbance responses of the feedback controlled closed-loop equation are also derived, and simulation results are provided to demonstrate the effect of the proposed control law.  相似文献   

5.
文新宇 《自动化学报》2014,40(9):1882-1888
基于干扰观测器控制(Disturbance-observer-based control,DOBC)作为一种有效的干扰补偿策略取得了广泛的应用. 然而,当干扰和控制输入不能在同一时刻进入控制通道时,外部信号很难得到实时估计和补偿.提出一种复合DOBC结构,包括干扰观测、干扰预测和反馈调节三个部分.该方法的特点是即使一类非线性系统存在输入时滞,同样可以继承传统DOBC的优点. 最后,通过构造辅助观测器给出了预测误差以及复合闭环系统的稳定性分析方法.  相似文献   

6.
This study investigates a finite‐time fault‐tolerant control scheme for a class of non‐affine nonlinear system with actuator faults and unknown disturbances. A global approximation method is applied to non‐affine nonlinear system to convert it into an affine‐like expression with accuracy. An adaptive terminal sliding mode disturbance observer is proposed to estimate unknown compound disturbances in finite time, including external disturbances and system uncertainties, which enhances system robustness. Controllers based on finite‐time Lyapunov theory are designed to force tracking errors to zero in finite time. Simulation results demonstrate the effectiveness of proposed method.  相似文献   

7.
This paper is concerned with disturbance rejection control for a vibrating flexible string system in the presence of unknown disturbances. First, the boundary disturbance observer is proposed to deal with the boundary disturbance and the infinite dimensional disturbance observer is introduced to mitigate the effects of the distributed disturbance. Subsequently, the boundary control and distributed control are developed to suppress the vibration and globally stabilize the string system at its equilibrium position. Under the control proposed, the uniformly bounded stability of the controlled system is testified employing rigorous analysis without resorting to discretization of the partial differential equation dynamics depending on the time and space. Finally, the simulation and comparison results verify the performance of the derived control.  相似文献   

8.
朱亮  姜长生  方炜 《信息与控制》2006,35(6):705-710
针对一类不确定非线性系统,基于轨迹线性化控制方法(TLC)及非线性干扰观测器技术(NDO)研究了一种新的非线性鲁棒控制策略.TLC是一种有效的非线性跟踪和解耦控制方法,但当系统中存在内部未建模动态和外界干扰时,当前TLC控制器性能将显著下降.本文利用NDO对系统中的不确定项进行估计,其输出与TLC控制律结合来对消不确定性的影响.最后通过一个数值仿真实例验证了本文提出的方法的有效性,仿真结果表明该鲁棒轨迹线性化控制方法具有很好的干扰衰减能力和鲁棒性能.  相似文献   

9.
This paper designs the active disturbance rejection control (ADRC) to achieve finite‐time stabilization for a class of uncertain nonlinear systems. The proposed control incorporates both an extended state observer (ESO) as well as an adaptive sliding mode controller. The ESO is utilized to estimate the full system states and the total uncertainties, and the adaptive strategy is incorporated to deal with the estimation errors. It is proved that, with the application of the proposed control law, semi‐global finite‐time stabilization can be achieved. Effectiveness of the proposed method is illustrated with a numerical example.  相似文献   

10.
王东委  富月 《自动化学报》2020,46(6):1220-1228
针对状态不可测、外部干扰未知, 并且状态和输入受限的离散时间线性系统, 将高阶观测器、干扰补偿控制与标准模型预测控制(Model predictive control, MPC)相结合, 提出了一种新的MPC方法. 首先利用高阶观测器同步观测未知状态和干扰, 使得观测误差一致有界收敛;然后基于该干扰估计值设计新的干扰补偿控制方法, 并将该方法与基于状态估计的标准MPC相结合, 实现上述系统的优化控制. 所提出的MPC方法克服了利用现有MPC方法求解具有外部干扰和状态约束的优化控制问题时存在无可行解的局限, 能够保证系统状态在每一时刻都满足约束条件, 并且使系统的输出响应接近采用标准MPC方法控制线性标称系统时得到的输出响应. 最后, 将所提控制方法应用到船舶航向控制系统中, 仿真结果表明了所提方法的有效性和优越性.  相似文献   

11.
A new configuration of a modified repetitive‐control system has been devised for a class of strictly proper plants that suppresses exogenous disturbances and uncertainties in the dynamics of the plant. It extends the applicability of the control system. The system consists of four parts: a two‐dimensional augmented model of the plant, which takes into account the difference in characteristics between continuous control and discrete learning in repetitive control; an equivalent‐input‐disturbance estimator; a state observer; and a state‐feedback controller. A robust‐stability condition expressed in terms of a linear matrix equality is used to determine the gains of the observer and the controller. Finally, a comparison of our method with repetitive control based on linear active disturbance rejection control (LADRC) shows how effective our method is and that it is superior to LADRC‐based repetitive control.  相似文献   

12.
This paper mainly focuses on designing an active vibration control for a flexible‐link manipulator in the presence of input constraint and unknown spatially infinite dimensional disturbances. The manipulator we studied can be taken as an Euler–Bernoulli beam, the dynamic model of which has the form of partial differential equations. As the existence of spatially infinite dimensional disturbances on the beam, we first design a disturbance observer to estimate infinite dimensional disturbances. The proposed disturbance observer is guaranteed exponentially stable. Then, taking input saturation into account, a novel disturbance‐observer‐based controller is developed to regulate the joint angular position and rapidly suppress vibrations on the beam, which is the main contribution of this study. The closed‐loop system is validated asymptotically stable by theoretical analysis. The effectiveness of the proposed scheme is demonstrated by numerical simulations.  相似文献   

13.
The distributed tracking control for multiple Euler‐Lagrange systems with a dynamic leader is investigated in this article via the event‐triggered approach. Only a portion of followers have access to the leader, and the communication topology among all agents is directed that contains a directed spanning tree rooted at the leader. The case that the leader's generalized velocity is constant is first considered, and a distributed event‐based control law is developed by using a velocity estimator. When the leader's generalized velocity is time‐varying, novel distributed continuous estimators are proposed to avoid the undesirable chattering effect while guaranteeing that the estimate errors converge to zeros. With the designed distributed estimators, another distributed event‐based control protocol is provided. Controller update frequency and resource consumption in our work can be reduced by applying the aforementioned two distributed control laws, and the tracking errors can converge to zeros. In addition, it is rigorously proved that no agent exhibits Zeno behavior. Finally, the effectiveness of the proposed distributed event‐based control laws is elucidated by a number of simulation examples.  相似文献   

14.
This paper looks at the problem of controlling an incinerator that burns waste gas to generate power. The system is modelled as a standard utility boiler using one known and one unknown (waste) fuel input. Standard linear controls have trouble dealing with large variations in the waste input, and in practice boiler shutdowns can occur. In this work, a nonlinear adaptive control design accounts for uncertainty in the plant parameters, and an adaptive neural‐network estimates the effect of the waste input. Since a linear observer design cannot guarantee convergence away from a set point, a novel nonlinear observer design provides estimates of the states. The observer design uses fictitious states to estimate nonlinear terms in the observer dynamics. The analysis guarantees Lyapunov stability, thus the observer bounds depend on the accuracy of the observer initial conditions. Simulation results show the proposed method can obtain accurate performance and stability, improving over results obtained withproportional–integral control.  相似文献   

15.
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition.  相似文献   

16.
In this paper, a design problem of low dimensional disturbance observer‐based control (DOBC) is considered for a class of nonlinear parabolic partial differential equation (PDE) systems with the spatio‐temporal disturbance modeled by an infinite dimensional exosystem of parabolic PDE. Motivated by the fact that the dominant structure of the parabolic PDE is usually characterized by a finite number of degrees of freedom, the modal decomposition method is initially applied to both the PDE system and the PDE exosystem to derive a low dimensional slow system and a low dimensional slow exosystem, which accurately capture the dominant dynamics of the PDE system and the PDE exosystem, respectively. Then, the definition of input‐to‐state stability for the PDE system with the spatio‐temporal disturbance is given to formulate the design objective. Subsequently, based on the derived slow system and slow exosystem, a low dimensional disturbance observer (DO) is constructed to estimate the state of the slow exosystem, and then a low dimensional DOBC is given to compensate the effect of the slow exosystem in order to reject approximately the spatio‐temporal disturbance. Then, a design method of low dimensional DOBC is developed in terms of linear matrix inequality to guarantee that not only the closed‐loop slow system is exponentially stable in the presence of the slow exosystem but also the closed‐loop PDE system is input‐to‐state stable in the presence of the spatio‐temporal disturbance. Finally, simulation results on the control of temperature profile for catalytic rod demonstrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
冯朝  凌杰  明敏  肖晓晖 《机器人》2018,40(6):825-834
针对运动系统中常见的重复参考轨迹,尽管迭代学习控制(iterative learning control,ILC)可以通过迭代有效消除重复误差,但其对于非重复性干扰十分敏感.为实现在非重复干扰环境下压电微动平台的精密运动,提出了融合ILC与干扰观测器(disturbance observer,DOB)的控制策略.为避免复杂的迟滞建模,将迟滞非线性视为迭代过程中的重复性输入干扰.为保证控制策略的稳定性,推导其收敛条件并分析对非重复性干扰的抑制作用从而降低收敛误差.最后在压电微动平台进行了对比实验,结果表明:所提控制策略可以在无迟滞模型的前提下有效补偿迟滞非线性.针对理想环境下的5Hz、10Hz、20Hz三角波跟踪,其跟踪误差的均方根在行程的0.4%以内;而在非重复干扰环境下,跟踪误差的均方根为10.24nm,与内置的控制器、单独的反馈控制器、ILC相比,分别降低了98.73%、98.67%与88.24%.而且在干扰环境下,所提控制策略加快了ILC的收敛速度.实验结果充分验证了所提控制策略的有效性,实现了压电微动平台的精密运动.  相似文献   

18.
In this paper, a design strategy of robust disturbance observer is proposed systematically for stable non‐minimum phase systems. This strategy synthesizes the internal and robust stability, relative order and mixed sensitivity design requirements together to establish the optimization function. The optimal solution is obtained by standard H control theory under the condition of guarantying the presented requirements. Simulation results of a rotary mechanical system show the effectiveness of the proposed strategy.  相似文献   

19.
The disturbance decoupling control method is investigated for flight control of a flexible air‐breathing hypersonic vehicle (FAHV). First, the longitudinal dynamics of the FAHV are simplified into nonlinear forms with mismatched system disturbances. Then a new nonlinear disturbance observer base on hyperbolic sine function is applied to estimate the mismatched disturbances. The disturbance decoupling control law for flight control of FAHV is deduced theoretically and its proof is provided. Finally, the stability of the closed‐loop control system under the action of disturbance decoupling control law is proved by Lyapunov stability theory. Simulation results exhibit the performance and effectiveness of the proposed disturbance decoupling control law.  相似文献   

20.
Disturbance observer‐based elegant anti‐disturbance control (DOBEADC) scheme is proposed for a class of stochastic systems with nonlinear dynamics and multiple disturbances. The stochastic disturbance observer based on pole placement is constructed to estimate disturbance which is generated by an exogenous system. Then, composite DOBC and controller is designed to guarantee the composite system is mean‐square stable and its performance satisfies a prescribed level. Finally, simulations on an A4D aircraft model show the effectiveness of the proposed approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号