首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
In this paper the problem of H dynamic feedback control for fuzzy dynamic systems has been studied. First the problem of H dynamic feedback controller designs for complex nonlinear systems, which can be represented by Takagi‐Sugeno (T‐S) fuzzy systems, is presented. Second, based on a Lyapunov function, four new dynamic feedback H fuzzy controllers are developed by adequately considering the interactions among all fuzzy sub‐systems and these dynamic feedback H controllers can be obtained by solving a set of suitable linear matrix inequalities. Finally, two examples are given to demonstrate the effectiveness of the proposed design methods. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
    
In this brief note Theorems 1 and 2 (Int. J. Robust Nonlinear Control 2000; 10 :1237–1242) are discussed in the light of the observations raised in Feng and Allen (Int. J. Robust Nonlinear Control). A simple correction to the proof of these theorems allows to keep the hypothesis on the possible rank deficiency of the system matrices B and C y. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
    
This paper considers the problem of delay‐dependent adaptive reliable H controller design against actuator faults for linear time‐varying delay systems. Based on the online estimation of eventual faults, the parameters of adaptive reliable H controller are updating automatically to compensate the fault effects on the system. A new delay‐dependent reliable H controller is established using a linear matrix inequality technique and an adaptive method, which guarantees the stability and adaptive H performance of closed‐loop systems in normal and faulty cases. A numerical example and its simulation results illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
    
This paper is concerned with the robust H control problem for a class of Markovian jump systems with uncertain switching probabilities, whose uncertainties are assumed to be elementwise bounded. First, new criterion of H performance for such uncertain systems is given. Then, new sufficient condition for H controller is established as strict linear matrix inequalities. Finally, a numerical example is used to demonstrate the effectiveness of the proposed methods. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
    
This paper develops a high performance nonlinear control method for an electric load simulator (ELS). The tracking performance of the ELS is mainly affected by the actuator's active motion disturbance and friction nonlinearity. First, a nonlinear model of ELS is developed, and then the Takagi‐Sugeno fuzzy model is used to represent the friction nonlinearity ofthe ELS. A state observer is constructed to estimate the speed of the load system. For converting the tracking control into a stabilization problem, a new control design called virtual desired state synthesis is proposed to define the internal desired states. External disturbances are attenuated based on an H criterion and the stability of the entire closed‐loop model is investigated using the well‐known quadratic Lyapunov function. Meanwhile, the feedback gains and the observer gains are obtained separately by solving a set of linear matrix inequalities (LMIs). Both a simulation and experiment were performed to validate the effectiveness of the developed algorithm.  相似文献   

6.
    
In this paper, a model reference control strategy is proposed in order to perform trajectory tracking in Takagi–Sugeno–Lipschitz (TSL) systems. Since the state vector is assumed not to be completely available for measurement, a proportional observer is added to the control scheme in order to apply an estimate‐feedback control action instead of a state‐feedback one. The overall design of both the controller and the observer gains are performed using a Lyapunov‐based quadratic boundedness specification, in order to improve the robustness against unknown exogenous disturbances. It is shown that the conditions that ensure convergence within ellipsoidal regions of the tracking and estimation errors can be expressed in the form of a linear matrix inequality (LMI) formulation. The effectiveness of the developed control strategy is demonstrated by means of simulation results.  相似文献   

7.
    
This paper deals with the fault detection observer design problem in finite frequency domain for linear time‐invariant continuous‐time systems with bounded disturbances. Two finite frequency performance indexes are introduced to measure the fault sensitivity and the disturbance robustness. Faults are considered in the low frequency domain while disturbances are considered in certain finite frequency domain. With the aid of the Generalized Kalman‐Yakubovich‐Popov lemma, the design methods are presented in terms of solutions to a set of linear matrix inequalities. An example of the VTOL aircraft is studied to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

8.
    
This paper considers quadratic stabilizability and H feedback control for stochastic discrete‐time uncertain systems with state‐ and control‐dependent noise. Specifically, the uncertain parameters considered are norm‐bounded and external disturbance is an l2‐square summable stochastic process. Firstly, both quadratic stability and quadratic stabilization criteria are presented in the form of linear matrix inequalities (LMIs). Then we design the robust H state and output feedback H controllers such that the system with admissible uncertainties is not only quadratically internally stable but also robust H controllable. Sufficient conditions for the existence of the desired robust H controllers are obtained via LMIs. Finally, some examples are supplied to illustrate the effectiveness of our results.  相似文献   

9.
    
In this paper, we present some computationally tractable conditions which make the constantly scaled H control synthesis problem convex. If one of the conditions proposed in this paper holds, the constantly scaled H control synthesis problem can be solved efficiently as an LMI problem. The results presented here include the existing results such as the state feedback and the full information problems as special cases. In addition, the results are generalized to the case that some of state variables are exactly available. Owing to this generalization, a larger class of problems can be reduced to convex problems, while reduced order controllers can be obtained. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
    
In this paper, the definition of robust finite‐time H control is presented for a class of disturbed systems. Time‐varying norm‐bounded exogenous disturbance is considered in the system. A state feedback controller is designed, via a Linear Matrix Inequalities (LMIs) approach, which ensures that the closed‐loop system is finite‐time bounded (FTB) and reduces the effect of the disturbance input on the controlled output to a prescribed level. The main result, derived by Lyapunov functions, is a sufficient condition for FTB of disturbed systems and the sufficient condition can be reduced to a feasibility problem involving LMIs. Then a DC motor position control problem is simulated as a demonstration for this study. Simulation results are presented to show the effectiveness of the proposed method as a promising approach for controlling similar disturbed systems.  相似文献   

11.
    
This note points out that both theorems in Mattei (Int. J. Robust Nonlinear Control 2000; 10 : 1237–1248) are incorrect for a general plant model. Additionally, it presents the corrections of them. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
    
We consider the design of transfer functions (filters) satisfying upper and lower bounds on the frequency response magnitude or on phase response, in the continuous and discrete time domains. The paper contribution is to prove that such problems are equivalent to finite dimensional convex optimization problems involving linear matrix inequality constraints. At now, such optimization problems can be efficiently solved. Note that this filter design problem is usually reduced to a semi infinite dimensional linear programming optimization problem under the additional assumption that the filter poles are fixed (for instance, when considering FIR design). Furthermore, the semi infinite dimensional optimization is practically solved, using a gridding approach on the frequency. In addition to be finite dimensional, our formulation allows to set or not the filter poles. These problems were mainly considered in signal processing. Our interest is to propose an approach dedicated to automatic control problems. In this paper, we focus on the following problems: design of weighting transfers for H control and design of lead‐lag networks for control. Numerical applications emphasize the interest of the proposed results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
    
In this paper, we present a new scheme for designing a H stabilizing controller for discrete‐time Takagi‐Sugeno fuzzy systems with actuator saturation and external disturbances. The weighting‐dependent Lyapunov functions approach is used to design a robust static output‐feedback controller. To address the input saturation problem, both constrained and saturated control input cases are considered. In both cases, stabilization conditions of the fuzzy system are formulated as a convex optimization problem in terms of linear matrix inequalities. Two simulation examples are included to illustrate the effectiveness of the proposed design methods. A comparison with the results given in recent literature on the subject is also presented.  相似文献   

14.
    
This brief note deals with the synthesis of H fixed‐order controllers for linear systems. It is well known that this problem can be formulated as a bilinear matrix inequality optimization problem which is non convex and NP hard to solve. In this paper sufficient conditions are provided which allow to convert the controller design into a linear matrix inequality feasibility problem. A numerical example on a practical control problem shows the application of the proposed technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
    
We deal with H state feedback control problem for the multi‐input‐multi‐output (MIMO) servo system and discuss the advantages of the facial reduction (FR) to the resulting linear matrix inequality (LMI) problems. In fact, as far as our usual setting, the dual of the LMI problem is not strictly feasible because the generalized plant has always stable invariant zeros. Thus FR is available to such LMI problems, and we can reduce and simplify the original LMI problem to a smaller‐size LMI problem. As a result, we observe that the numerical performance of the SDP solvers is improved. Also, as a by‐product, we obtain the best performance index of the reduced LMI problem with a closed‐form expression. This helps the H performance limitation analysis. Another contribution is to reveal that the resulting LMI problem obtained from H control problem has a finite optimal value, but no optimal solutions under an additional assumption. This is also confirmed in the numerical experiment of this paper. FR also plays an essential role in this analysis.  相似文献   

16.
    
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H controller alone or a state‐derivative feedback H controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the problem of a generalized type of H control is investigated for continuous‐time singular systems, which treats a mixed attenuation of exogenous inputs and initial conditions. First, a performance measure that is essentially the worst‐case norm of the regulated outputs over all exogenous inputs and initial conditions is introduced. A necessary and sufficient condition is obtained to ensure the singular system to be admissible and the performance measure to be less than a prescribed scalar. Based on the criterion a sufficient condition for the existence of a state‐feedback controller is established in terms of linear matrix inequalities. Moreover, the relationship between the performance measure and the standard H norm of the system is provided. Two numerical examples are given to demonstrate the properties of the obtained results.  相似文献   

18.
彭晨  田恩刚 《自动化学报》2010,36(1):188-192
提出一种改进的具有非理想网络状况, 如时变网络时延和丢包等的网络控制系统分析与综合方法. 在引入具有最新信号选择功能的逻辑零阶保持器和已有的网络系统模型基础上, 采用Lyapunov-Krasovskii泛函方法, 通过引入自由矩阵消除交叉项和利用函数的凸性进行等价变换, 得到保守性较小的效果. 实例表明上述方法的有效性.  相似文献   

19.
This paper is to consider dynamic output feedback H control of mean‐field type for stochastic discrete‐time systems with state‐ and disturbance‐dependent noise. A stochastic bounded real lemma (SBRL) of mean‐field type is derived. Based on the SBRL, a sufficient condition with the form of coupled nonlinear matrix inequalities is derived for the existence of a stabilizing H controller. Moreover, a numerical example is given to examine the effectiveness of the theoretical results.  相似文献   

20.
    
This paper focuses on the problem of finite‐time H control for one family of discrete‐time uncertain singular Markovian jump systems with sensor fault and randomly occurring nonlinearities through a sliding mode approach. The failure of sensor is described as a general and practical continuous fault model. Nonlinear disturbance satisfies the Lipschitz condition and occurs in a probabilistic way. Firstly, based on the state estimator, the discrete‐time close‐loop error system can be constructed and sufficient criteria are provided to guarantee the augment system is sliding mode finite‐time boundedness and sliding mode H finite‐time boundedness. The sliding mode control law is synthesized to guarantee the reachability of the sliding surface in a short time interval, and the gain matrices of state feedback controller and state estimator are achieved by solving a feasibility problem in terms of linear matrix inequalities through a decoupling technique. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号