首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this paper, we study the synchronization problem for complex dynamical networks with switching topology from a switched system point of view. The synchronization problem is transformed into the stability problem for time-varying switched systems. We address two basic problems: synchronization under arbitrary switching topology, and synchronization via design of switching within a pre-given collection of topologies when synchronization cannot be achieved by using any topology alone in this collection. For the both problems, we first establish synchronization criteria for general connection topology. Then, under the condition of simultaneous triangularization of the connection matrices, a common Lyapunov function (for the first problem) and a single Lyapunov and multiple Lyapunov functions (for the second problem) are systematically constructed respectively by those of several lower-dimensional dynamic systems. In order to achieve synchronization using multiple Lyapunov functions, a stability condition and switching law design method for time-varying switched systems are also presented, which avoid the usual non-increasing condition.  相似文献   

2.
This paper investigates the cluster synchronization for network of linear systems via a generalized pinning control strategy which allows the network of each cluster to take relaxed topological structure. For the case with fixed topology, it is shown that a feasible feedback controller can be designed to achieve the given cluster synchronization pattern if the induced network topology of each cluster has a directed spanning tree and further compared to the couplings among different clusters, the couplings within the each cluster are sufficiently strong. An extra balanced condition is imposed on the network topology of each cluster to allow for the cluster synchronization under arbitrary switching network topologies. Such a balanced condition can be removed via the use of dwell-time technique. For all the cases, the lower bounds for such strengths of couplings within each cluster that secure the synchronization as well as cluster synchronization rate are explicitly specified. Finally, some illustrative examples are provided to demonstrate the effectiveness of the theoretical findings.  相似文献   

3.
This paper studies state synchronization of homogeneous multiagent systems (MAS) via a static protocol with partial‐state coupling in the presence of a time‐varying communication topology, which includes general time‐varying graphs as well as switching graphs. If the agents are squared‐down passive or squared‐down passifiable (via static output feedback or static input feedforward), then a static protocol can be designed for balanced, time‐varying graphs. Moreover, this static protocol works for arbitrary switching directed graphs if the agents are squared‐down minimum phase with relative degree one. The static protocol is designed for each agent such that state synchronization is achieved without requiring exact knowledge about the time‐varying network.  相似文献   

4.
This paper studies the consensus problem of second‐order discrete‐time multi‐agent systems with relative‐state‐dependent noises. Directed switching topologies are considered. Firstly, for a kind of switching topology with each digraph containing a spanning tree, we give a weak consensus result on the basis of the mode‐dependent average dwell time method. Then, if all digraphs in a switching topology are strongly connected and the corresponding Laplacian matrices have a common left eigenvector for zero eigenvalue, we prove that the mean square and almost sure consensus can always be guaranteed for an arbitrary switching sequence with some constant distributed control gains, and we also give the statistic properties of the final consensus points. Numerical examples are presented to illustrate the effectiveness of our results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The current theoretical investigation on the controllability of switched multiagent systems mainly focuses on fixed connected topology or union graph without nonaccessible nodes. However, for discrete‐time multiagent systems with switching topology, it is still unknown whether the existing results are valid or not under the condition of arbitrary topology. Based on graph distance partitions and Wonham's geometric approach, we provide the lower and upper bounds for the dimension of controllable subspaces of discrete‐time multiagent systems. Unlike the existing results of controllability with switching topology, the proposed results have the advantage of being applicable to multiagent systems with arbitrary graphic topologies, union graph (strongly connected or not), and coupling weights. We also provide 2 algorithms for computing the lower and upper bounds for the dimension of controllable subspaces, respectively. Furthermore, as a remarkable application, we present how the proposed lower bound can be utilized for achieving the targeted controllability if the dimension of the controllable subspace of the switched system satisfies certain conditions.  相似文献   

6.
网络拓扑结构与节点动态在复杂网络的同步化过程中起着关键性的作用,针对具有切换拓扑结构与非恒等节点的同步化问题还没有非常有效的判据.本文研究了具有切换拓扑与非恒等节点的复杂网络同步化问题,针对非恒等节点不存在公共平衡解的情况,选取所有节点的平均状态作为同步化目标,并在此基础上建立起误差动态方程.基于所有外部耦合矩阵可以同时三角化的条件下,构建了低维系统的公共Lyapunov函数,提出了在误差向量范数有界意义下的复杂网络全局同步化判据,保证系统在任意切换策略下实现复杂网络的同步化.最后通过数值仿真验证了结果的有效性.  相似文献   

7.
This paper studies output synchronization problem, formation problem, and regulated synchronization problem for a heterogenous network of discrete‐time introspective right‐invertible agents. We first propose a decentralized control scheme to solve the output synchronization problem for a set of communication topologies. Moreover, if the synchronization trajectories are assumed to be bounded, a universal controller can be constructed for all communication topologies, which contain a directed spanning tree. The design can be applied to solve the formation problem with arbitrary formation vectors. In the regulated synchronization problem, we assume only the root receives information from exosystem. We then design a decentralized controller to solve the problem for a set of communication topologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Time‐varying output formation control problems for linear multi‐agent systems with switching topologies are studied, where two types of switching topologies are considered: (1) the topology is undirected and jointly connected, and 2) each topology is directed and has a spanning tree. An output formation protocol under switching topologies is constructed using the outputs of neighboring agents via dynamic output feedback. Two algorithms are proposed to design the dynamic protocols under both jointly connected topologies and switching directed topologies. Time‐varying output formation feasibility conditions are given to describe the compatible relationship among the desired time‐varying output formation, the dynamics of each agent, and the switching topologies. The stability of the closed‐loop multi‐agent systems under the proposed two algorithms is investigated based on the common Lyapunov functional theory and the piecewise Lyapunov functional theory, respectively. In the case where the topologies are jointly connected, time‐varying output formation can be achieved for multi‐agent systems using the designed protocol if the given time‐varying output formation satisfies the feasible constraint. For the case where the switching topologies are directed and have a spanning tree, the time‐varying output formation can be realized if the output formation feasibility constraint is satisfied and the dwell time is larger than a positive threshold. Moreover, approaches to determine the output formation references are provided to describe the macroscopic movement of the time‐varying output formation. Finally, numerical simulation results are presented to demonstrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, global exponential synchronization of a class of discrete delayed complex networks with switching topology has been investigated by using Lyapunov-Ruzimiki method. The impulsive scheme is designed to work at the time instant of switching occurrence. A time-varying delay-dependent criterion for impulsive synchronization is given to ensure the delayed discrete complex networks switching topology tending to a synchronous state. Furthermore, a numerical simulation is given to illustrate the effectiveness of main results  相似文献   

10.
This paper is concerned with the stability analysis problems of discrete‐time systems with time‐varying delays using summation inequalities. In the literature focusing on the Lyapunov‐Krasovskii approach, the Jensen integral/summation inequalities have played important roles to develop less conservative stability criteria and thus have been widely studied. Recently, the Jensen integral inequality was successfully generalized to the Bessel‐Legendre inequalities constructed with arbitrary‐order Legendre polynomials. It was also shown that general inequality contributes to the less conservatism of stability criteria. In the case of discrete‐time systems, however, the Jensen summation inequality are hardly extensible to general ones since there have still not been general discrete orthogonal polynomials applicable to the developments of summation inequalities. Motivated by such observations, this paper proposes novel discrete orthogonal polynomials and then successfully derives general summation inequalities. The resulting summation inequalities are discrete‐time counterparts of the Bessel‐Legendre inequalities but are not based on the discrete Legendre polynomials. By developing hierarchical stability criteria based on the proposed summation inequalities, the effectiveness of the proposed approaches is demonstrated via three numerical examples for the stability analysis of discrete‐time systems with time‐varying delays.  相似文献   

11.
In this paper, we consider the output synchronization problem for heterogeneous networks of right‐invertible linear agents. We assume that all the agents are introspective, meaning that they have access to their own local measurements. Under this assumption, we then propose a decentralized control scheme for solving the output synchronization problem for a set of network topologies. The proposed scheme can also be applied to solve the output formation problem with arbitrary formation vectors. We also consider the regulation of output synchronization problem, where the output of each agent has to track an a priori specified reference trajectory, generated by an exosystem. In this case, we assume that the root agent has access to its own output relative to the reference trajectory.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper deals with uniform synchronization analysis of multi‐agent systems with switching topologies. The agents are assumed to have general, yet identical, linear dynamics. The underlying communication topology may switch arbitrarily within a finite set of admissible topologies. We establish conditions under which the network is uniformly synchronized meaning that synchronization is valid under all possible switching scenarios. The primary conditions established are in terms of a pair of Lyapunov strict inequalities. Following those conditions, small gain and passivity types of conditions are proposed under which uniform synchronization is guaranteed. The proposed results are also extended to the case of observer‐based protocols. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper addresses the cooperative output regulation problem of multiagent systems with fixed and switching topologies. Each agent is a heterogeneous linear system, and the output of the exosystem can be available to only a subset of agents. For the agents that can directly access the exosystem, a common observer based on an event‐triggered strategy is constructed to estimate the exogenous signal for feedback control design. For the rest of the agents, estimators based on an event‐triggered mechanism to acquire the estimation value of the exogenous signal are designed under some essential assumptions. A decentralized event‐triggered formulation is considered first by applying a Lyapunov function for a fixed topology. Furthermore, a topology‐dependent triggering condition and the average dwell‐time switching law are deduced simultaneously by using multiple Lyapunov functions for switching topologies. Under communication constraints, we propose observer‐based and estimator‐based feedback controllers to solve the cooperative output regulation problem using available local information among agents. Two examples are finally provided to verify the effectiveness of the proposed theoretical results.  相似文献   

14.
This article studies the consensus problem in directed networks, assuming that each agent is with double-integrator dynamics and only obtains the measurements of its positions relative to its neighbours at sampling instants. We propose a protocol based on sampled-data control and derive an equivalent characterisation of the solvability of the consensus problem under this protocol. In virtue of this equivalent characterisation, we further consider two cases: fixed topology and switching topology. For the first case, we present a set of sampling periods and feedback coefficients which ensure that the protocol can solve a consensus problem. For the second case, we derive sufficient conditions for the protocol to solve a consensus problem under arbitrary switching signals and under a class of switching signals, respectively. Finally, simulations are provided to illustrate the effectiveness of the theoretical results.  相似文献   

15.
In this article, a unified mode‐dependent average dwell time (MDADT) stability result is investigated, which could be applied to switched systems with an arbitrary combination of stable and unstable subsystems. Combined with MDADT analysis method, we classified subsystems into two categories: switching stable subsystems and switching unstable subsystems. State divergence caused by switching unstable subsystems could be compensated by activating switching stable subsystems for a sufficiently long time. Based on the above considerations, a new globally exponentially stability condition was proposed for discrete‐time switched linear systems. Under the premise of not resolving the LMIs, the MDADT boundary of the new stability condition is allowed to be readjusted according to the actual switching signal. Furthermore, the new stability result is a generalization of the previous one, which is more suitable for the case of more unstable subsystems. Some simulation results are given to show the advantages of the theoretic results obtained.  相似文献   

16.
研究了具有拓扑切换特性的离散型不确定时空网络的指数同步问题.基于稳定性理论,构造了具有指数形式的Lyapunov函数,并设计了同步控制器的结构方程,进而获得了时空网络的同步条件.同时,我们设计了未知参数的识别律,有效地识别了网络中的未知参数.最后,选取实际的激光相位共轭波空间扩展系统作为网络节点进行仿真模拟,验证了同步...  相似文献   

17.
This paper investigates the design of distributed observers for agents with identical linear discrete‐time state‐space dynamics networked on a directed graph interaction topology. The digraph is assumed to have fixed topology and contain a spanning tree. Cooperative observer design guaranteeing convergence of the estimates of all agents to their actual states is proposed. The notion of convergence region for distributed observers on graphs is introduced. It is shown that the proposed cooperative observer design has a robustness property. Application of cooperative observers is made to the synchronization problem. A command trajectory generator and pinning control are employed for synchronizing all the agents to a desired trajectory. Complete knowledge about the agent's state is not assumed. A duality principle is shown for observers and state feedback for distributed discrete‐time systems on graph topologies. Three different observer/controller architectures are proposed for dynamic output feedback regulator design, and they are shown to guarantee convergence of the estimate to the true state and synchronization of all the agents' states to the command state trajectory. This provides design methods for cooperative regulators based on a separation principle. It is shown that the observer convergence region and feedback control synchronizing region for discrete‐time systems are inherently bounded, so that the conditions for observer convergence and state synchronization are stricter than the results for the continuous‐time counterparts. This is in part remedied by using weighting of different feedback coupling gains for every agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the global exponential synchronization of stochastic delayed switching networks via hybrid control. The network under investigation is quite general to reflect the reality, where the network topology consists of r modes and switches from one mode to another according to a Markovian chain with known transition probability. Parameter uncertainties, time varying delay and stochastic disturbances are all taken into account in this study. Based on the Lyapunov functional method and stochastic analysis techniques, some new criteria for the global robust synchronization via hybrid control are established. Finally, one example with numerical simulation is given for illustration. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

19.
This paper studies the bipartite synchronization in a network of nonlinear systems with antagonistic interactions and switching topologies. In order to obtain some conditions such that the network achieves bipartite synchronization for any initial conditions, we design a pinning scheme to pin a part of agents. Under the assumptions that all signed graphs are structurally balanced and the nonlinear system satisfies a one-sided Lipschitz condition, we derive conditions under which the network reaches bipartite synchronization for any initial conditions and arbitrary switching signals. For a general switching signal (especially the periodic switching signal), some conditions related to switching signal are obtained. Finally, we present two numerical examples to illustrate the effectiveness of the obtained results.  相似文献   

20.
We consider discrete-time switched systems with switching of linear time-invariant right-hand parts. The notion of a connected discrete switched system is introduced. For systems with the connectedness property, we propose necessary and sufficient frequency-domain conditions for the existence of a common quadratic Lyapunov function that provides the stability for a system under arbitrary switching. The set of connected switched systems contains discrete control systems with several time-varying nonlinearities from the finite sectors, considered in the theory of absolute stability. We consider the case of switching between three linear subsystems in more details and give an illustrative example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号