首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用射频磁控溅射法制备了Al掺杂ZnO(ZAO)薄膜,研究了真空退火对其组织结构和光电性能的影响规律.结果表明,所制备的ZAO薄膜厚度均匀、组织致密,具有(002)择优取向的六方纤锌矿结构,400℃真空退火后,薄膜晶粒粗大,(002)晶面择优取向性进一步加强.延长退火时间对薄膜的相结构、组织形貌及晶粒大小没有明显的影响.随着退火时间的增加,薄膜的电阻率呈降低趋势,退火3 h时电阻率最低,为2.25×10-3Ω·cm,但长时间退火,电阻率变化不大.薄膜样品的透光率随真空退火时间的延长先降低,后升高,再降低;样品在真空退火4 h时对可见光的平均透过率最佳,在80%以上.退火后,ZAO薄膜的吸收边发生了蓝移现象,光学禁带宽度增大.  相似文献   

2.
采用金属有机化学气相沉积(MOCVD)技术在蓝宝石衬底上制备了GaN基LED外延层,采用磁控溅射法制备了氧化铟锡(ITO)薄膜,ITO薄膜用于制作与p-GaN的欧姆接触.研究了快速热退火温度为550℃,退火时间为200 s时,不同氧气体积流量对ITO薄膜性能及LED芯片光电性能的影响.结果表明:不通氧气时,ITO薄膜的方块电阻和透过率分别为33 Ω/口和93.1%,LED芯片出现电流拥挤效应,其电光转换效率只有33.3%;氧气体积流量为1 cm3/min时,ITO薄膜的方块电阻和透过率分别为70 Ω/口和95.9%,LED芯片的电流扩展不佳,其正向电压较高,电光转换效率为43.8%;氧气体积流量为0.4 cm3/min时,ITO薄膜的方块电阻和透过率分别为58 Ω/口和95.4%,LED芯片的电流扩展最佳,其亮度最高、正向电压最低,电光转换效率较高,为52.9%.  相似文献   

3.
利用溶胶-凝胶法在(0001)Al2O3衬底上制备了Al/Zn原子比为1%的ZnO:Al薄膜,将能量56keV、剂量1×1017ions/cm2的N离子注入到薄膜中.离子注入后,样品在500~900℃氮气气氛中退火,利用X射线衍射(XRD)、光致发光(PL)、透射谱和四探针研究了退火温度对薄膜性能的影响.结果显示,在800℃以下退火,随退火温度提高,薄膜结晶性能逐渐变好;在600℃以上退火,随退火温度提高,紫外近带边发光峰(NBE)和缺陷相关的深能级可见光发光带都逐渐增强;600℃退火时,样品的电阻率仅为83Ω·cm.  相似文献   

4.
磁控溅射法制备AZO薄膜的工艺研究   总被引:8,自引:1,他引:7  
用XRD测试仪、分光光度计、四探针等测试仪器,探讨了制备气氛、退火温度和退火环境对AZO薄膜光电性能及结构的影响。结果表明:氧气和氩气的体积流量比为2∶1时,薄膜透光率最高(95.33%);退火有利于薄膜结晶;低于400℃退火时,温度越高薄膜电阻越小,超过400℃后,真空中退火温度再升高电阻变化不大,而空气中退火温度再升高电阻反而变大。  相似文献   

5.
采用氩离子束镀膜技术和硅平面工艺,在SiO2/Si衬底上淀积钛酸锶钡 (Ba1-xSrxTiO3)薄膜,研究在氧气氛中不同温度和时间的退火对薄膜的介电常数的影响。实验结果表明,在退火温度为600℃时,随着氧退火时间的增加,钛酸锶钡薄膜的相对介电常数减小;而在退火时间为30 min时,随着退火温度的增加,钛酸锶钡薄膜的相对介电常数增加。微观结构分析和极化理论解释了这一现象。  相似文献   

6.
利用氩离子束镀膜技术在 SiO2/Si 衬底上淀积 BST 薄膜,研究了氧气氛下退火对 BST 薄膜热敏特性的影响。结果表明,当退火温度不太高时(≤600℃),薄膜热敏特性随退火温度升高而变差;但当退火温度较高时(>600℃),薄膜热敏特性随退火温度升高而得到改善。在室温至 200℃范围内 BST 薄膜具有较好的热敏特性,其温度系数最大值为–5.3 %℃–1。并利用 SEM 和 AES 分析了退火条件对薄膜电阻热敏特性的影响机理。  相似文献   

7.
采用直流反应磁控溅射法在玻璃基底上用Zn(99.99%)掺杂Al(1.5%)靶制备出高质量的Al掺杂的ZnO(AZO)薄膜。用X射线光电子能谱仪对退火处理后的薄膜进行了成分和元素的价态分析,并用Van der Pauw方法对样品的电学特性进行了测量。实验结果表明,Zn和Al元素都以氧化态的形式存在,O元素主要是以晶格氧和吸附氧的形式存在。AZO薄膜的电学性质受退火温度和氧氩比的影响较大。随着退火温度的升高,电阻率减小,载流子浓度和迁移率增大。随着氧氩比的增大,电阻率增大,迁移率减小。因此可得到用直流反应磁控溅射法制备AZO薄膜的最佳氧氩比和退火温度分别为0.3/27和400℃,在此条件下制备出的薄膜电阻率可低至10-4Ω.cm,载流子浓度可达1020cm-3。  相似文献   

8.
利用反应磁控溅射法沉积了ZrO2介电薄膜,研究了退火温度对ZrO2介电薄膜电学性能的影响,并对漏电流最小的样品的漏电流机制进行了分析。结果表明,随着退火温度的升高,漏电流先减小后增大,退火温度为300℃时所制备薄膜的漏电流最小,当所加电压为–1.4 V时,漏电流密度为8.32×10–4 A/cm2。当所加正偏压为0-0.8 V和0.8-4.0 V时,该样品的漏电流主导机制分别为肖特基发射和直接隧穿电流;当所加负偏压为–1.7-0 V和–4.0-–1.7 V时,其主导机制分别为肖特基发射和空间电荷限制电流。  相似文献   

9.
Bi_(3.5)Yb_(0.5)Ti_3O_(12)铁电薄膜的制备及性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶(Sol-Gel)法在Pt(111)/Ti/SiO2/Si(100)基片上淀积了Bi3.5Yb0.5Ti3O12(BYT)铁电薄膜,研究了在不同退火温度下形成的BYT薄膜的微观结构以及铁电性能方面的区别。结果发现,在610,660,710和760℃不同温度下退火的BYT薄膜的结晶度不同,退火温度越高的BYT薄膜,其结晶度越高。并且发现,BYT薄膜的剩余极化值(2Pr)在710℃以下随退火温度增高而增大,在710℃达到最大;在外加400kV/cm电场时2Pr为36.7μC/cm2,然后随退火温度上升又有所下降。  相似文献   

10.
用脉冲ArF准分子激光熔蚀SiC陶瓷靶,在800C Si(100)衬底上淀积SiC薄膜,经不同温度真空(10-3Pa)退火后,用FTIR、XRD、TEM、XPS、PL谱等分析方法,研究了薄膜最佳晶化温度及表面形态、结构、组成,并对在最佳退火温度处理后的样品进行了化学态、微结构及光致发光的研究.结果表明,在Si(100)上800C淀积的样品为非晶SiC薄膜.经850-1050C不同温度真空退火后,SiC薄膜经非晶核化-长大过程,在980C完成最佳晶化.随退火温度的变化,薄膜中可能存在3C-SiC与6H-SiC的竞争生长或/和3C-SiC相的长、消(最佳温度退火样品中6H-SiC和3C-SiC两种晶相共存).以370nm波长光激发样品薄膜表面,显示较强的447nm蓝光发射,其发光机制可能是空位缺陷及其它晶格缺陷形成的浅施主能级向价带的电子辐射复合跃迁.  相似文献   

11.
We report on the electrical properties of ZnO films and devices grown on different substrates by radio-frequency magnetron sputtering. The films grown on c-plane sapphire were annealed in the range 800–1,000°C. The electron concentration increased with annealing temperature reaching 1.4×1019 cm?3 for 1,000°C. Mobility also increased, however, reaching its maximum value 64.4 cm2/V · sec for 950°C anneal. High-performance Schottky diodes were fabricated on ZnO films grown on n-type 6H-SiC by depositing Au/Ni(300/300 Å). After annealing at 900°C, the leakage current (at ?5 V reverse bias) decreased from 2.2 × 10?7 A to ~5.0 × 10?8 A after annealing at 900°C, the forward current increased by a factor of 2, and the ideality factor decreased from 1.5 to 1.03. The ZnO films were also grown on p-type 6H-SiC, and n-ZnO/p-SiC heterostructure diodes were fabricated. The p-n diode performance increased dramatically after annealing at 950°C. The leakage current decreased from 2.0×10?4 A to 3.0×10?7 A at ?10 V reverse bias, and the forward current increased slightly from 2.7 mA to 3.9 mA at 7 V forward bias; the ideality factor of the annealed diode was estimated as 2.2, while that for the as-grown sample was considerably higher.  相似文献   

12.
Thin films of Cu-In-Se (CISe) photoabsorber with an overall composition of CuIn3Se5 were deposited onto glass/indium tin oxide (ITO) substrates from a polycrystalline bulk CuIn3Se5 source using the high-vacuum evaporation technique. Thermal conditions for the substrates during the evaporation process and the subsequent annealing in vacuum were selected to prepare polycrystalline n-CuIn3Se5 photoabsorber layers for use in hybrid photovoltaic structures based on an inorganic photoabsorber and conductive polymer functional layers. The CISe layers were deposited at a substrate temperature of 200°C and were annealed at temperatures from 300°C to 500°C in vacuum. Part of the as-deposited CISe was annealed twice, in argon and in vacuum at 500°C. These layers exhibited high photosensitivity and photoconductivity when illuminated with white light at an intensity of 100 mW/cm2. The results showed that the chalcopyrite structure of the prepared CISe photoabsorber films adhered well to the glass/ITO substrate. The average value of charge carrier concentration and the profile of charge carrier concentration in the annealed CISe photoabsorber layer were calculated using impedance spectroscopy.  相似文献   

13.
Diamond-like carbon (DLC) films were prepared by ion-beam sputtering of a graphite target and annealed at a temperature of 400°C in vacuum and nitrogen with oxygen admixture (about 1–2%). The Raman and optical absorption spectra of these films were studied. Anomalous changes in the DLC films annealed in nitrogen were detected. The optical absorptance of films in the visible range of the spectrum decreased by approximately two orders of magnitude; the D and G lines of graphene nanoclusters disappeared in the Raman spectra, while new narrow lines at 928, 968, and 2324 cm?1, as well as a broad line at 2200–2400 cm?1, arose. These changes were found to be reversible. Subsequent annealing of the films in vacuum (400°C) restored the optical properties and Raman spectra of the samples. The results obtained are indicative of the formation of new carbon-nitrogen nanoclusters under certain conditions of annealing of a DLC film.  相似文献   

14.
A metastable Ge0.12Si0.88 layer 265 nm thick was deposited pseudomorphically on a Si(100) substrate and then implanted with 100 keV phosphorus ions at room temperature for doses of 5 × 1013/cm2 to 1.5 × 1015/cm2. The ions stop within the epilayer (projected range ∼125 nm). MeV4He backscattering/channeling spectrometry, transmission electron microscopy, and double-crystal x-ray diffractometry were used to characterize the damage and strain in the films. The samples were subsequently annealed in high vacuum from 400-800°C for 30 min at each temperature. For the nonamorphized samples (doses of 5 and 10 × 1013/cm2), most of the implantation-induced damage and strain disappear after annealing at 400-550°C, but the implanted P ions activate poorly. After annealing at 700-800°C, near complete activation is achieved but the strain relaxes. For the amorphized samples (dose of 1.5 × 1015/cm2), the amorphous GeSi regrows by solid-phase epitaxy and the dopants are ∼100% activated after annealing at 550°C, but the regrown GeSi relaxes with a high density of dislocations. The strain relaxes more extensively upon annealing in an implanted sample than in a nonimplanted one, other conditions being equal. This effect is more pronounced at higher ion doses, probably due to the increased amount of damage introduced at high doses. On leave from Yonsei University, Seoul 120-749, Korea  相似文献   

15.
Highly transparent and conducting undoped zinc oxide films have been obtained with a best resistivity of ~1.1 × 10-3 Ω cm, a carrier density of ~1.5 × 1020 cm?3 and a mobility of ~38 cm2V?1s ?1. These were produced by activated reactive evaporation at a deposition rate of 2 to 8Å/s with a substrate temperature ≤200° C. The films deposited by this process were found to have resistivities that were thickness independent and also were relatively insensitive to deposition parameters. In terms of conductivity, it was found that films deposited at higher temperatures (T > 300°+ C) were always inferior to the films deposited below 200° C. High temperature vacuum annealing (350° C) significantly degraded the resistivity of the undoped films deposited at low temperature; this was attributable to a drop in both the electron concentration and the mobility. Aluminum doping was found to be able to stabilize the electron concentration while the drop in mobility was found to be related to the choice of substrate.  相似文献   

16.
The bottom contact pentacene-based thin-film transistor is fabricated, and it is treated by rapid thermal annealing (RTA) with the annealed temperature up to 240 °C for 2 min in the vacuum of 1.3 × 10−2 torr. The morphology and structure for the pentacene films of OTFTs were examined by scanning electron microscopy and X-ray diffraction technique. The thin-film phase and a very small fraction of single-crystal phase were found in the as-deposited pentacene films. While the annealing temperature increases to 60 °C, the pentacene molecular ordering was significantly improved though the grain size only slightly increased. The device annealed at temperature of 120 °C has optimal electrical properties, being consistent with the experimental results of XRD. The post-annealing treatment results in the enhancement of field-effect mobility in pentacene-based thin-film transistors. The field-effect mobility increases from 0.243 cm2/V s to 0.62 cm2/V s. Besides, the threshold voltage of device shifts from −7 V to −3.88 V and the on/off current ratio increases from 4.0 × 103 to 8.7 × 103.  相似文献   

17.
La-modified lead titanate (PLT) thin films were prepared by hot-wall type low pressure-metalorganic chemical vapor deposition method. Pb(dpm)2, La(dpm)3, and titanium tetraisopropoxide were used as source materials. The films were deposited at 500°C under the low pressure of 1000 mTorr and then annealed at 650°C for 10 min in oxygen ambient. Sputter-deposited platinum electrodes and 180 nm thick PLT thin films were employed to form MIM capacitors with the best combination of high charge storage density (26.7 μC/cm2 at 3V) and low leakage current density (1.5 × 10-7 A/cm2 at 3V). The measured dielectric constant and dielectric loss were 1000∼1200 and 0.06∼0.07 at zero bias and 100 kHz, respectively.  相似文献   

18.
Post-growth thermal annealing (e.g., 500°C, 30 min), is proposed as one of the promising techniques to realize and to improve the quality of p-type ZnSe layers grown by metalorganic vapor phase epitaxy (MOVPE). The layers were grown at low temperature (350°C) by photo-assisted MOVPE with doping nitrogen from tertiarybutylamine (t-BuNH2). The flow rate of t-BuNH2 was limited to be relatively low, in order to avoid heavy doping, with which as-grown layers exhibited electrically high-resistivity; but the thermal annealing converted the layers to p-type. As the as-grown layers exhibited the stronger donor-to-acceptor pair recombination lines or the weaker donor-bound excitonic emission (Ix) lines in photoluminescence, the annealed layers resulted in higher net acceptor concentration, which was 1 x 1017 cm−4 at the optimum conditions at present.  相似文献   

19.
In this study, aluminum-doped ZnO (AZO) thin films were prepared by a sol–gel with spin coating process. The AZO films were annealed by a two-step process. The films were first annealed in air or nitrogen at 500°C for 3 h, followed by annealing in three types of ambient, i.e., vacuum (10?3 Torr or 10?6 Torr) or forming gas (10% H2/90% N2), at 500°C for 4 h. The effect of the annealing ambient on the microstructure, electrical and optical properties of the AZO films was explored by x-ray diffraction, field-emission scanning electron microscopy, four-point probe sheet resistivity measurements, Hall voltage measurements, and ultraviolet–visible spectroscopy. The results showed that the size of AZO particulates in the films was determined mainly by the first annealing step. The films annealed in air in the first step were composed of larger AZO particulates than those annealed in nitrogen. The conductivities of the AZO films were significantly increased by the second annealing step. Second annealing in a high-vacuum system (10?6 Torr) led to the highest AZO film conductivity among the three ambients. Regardless of the various annealing processes, the films remained transparent under visible light and exhibited a sharp absorption edge in the ultraviolet region. The highest conductivity, i.e., 168 S cm?1, was obtained from films annealed first in air and then in vacuum of 10?6 Torr.  相似文献   

20.
AlN films deposited on SiC or sapphire substrates by pulsed laser deposition were annealed at 1200°C, 1400°C, and 1600°C for 30 min in an inert atmosphere to examine how their structure, surface morphology, and substrate-film interface are altered during high temperature thermal processing. Shifts in the x-ray rocking curve peaks suggest that annealing increases the film density or relaxes the films and reduces the c-axis Poisson compression. Scanning electron micrographs show that the AlN begins to noticeably evaporate at 1600°C, and the evaporation rate is higher for the films grown on sapphire because the as-deposited film contained more pinholes. Rutherford backscattering spectroscopy shows that the interface between the film and substrate improves with annealing temperature for SiC substrates, but the interface quality for the 1600°C anneal is poorer than it is for the 1400°C anneal when the substrate is sapphire. Transmission electron micrographs show that the as-deposited films on SiC contain many stacking faults, while those annealed at 1600°C have a columnar structure with slightly misoriented grains. The as-deposited films on sapphire have an incoherent interface, and voids are formed at the interface when the samples are annealed at 1600°C. Auger electron spectroscopy shows that virtually no intermixing occurs across the interface, and that the annealed films contain less oxygen than the as-grown films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号