共查询到16条相似文献,搜索用时 46 毫秒
1.
退火方式及PCBM阴极修饰层对聚合物太阳电池的影响 总被引:1,自引:0,他引:1
研究了不同退火方式及PCBM阴极修饰层对聚合物太阳电池性能的影响。与前退火相比,后退火的器件性能显著提高,电池的开路电压Voc由0.36V增加到0.60V,能量转换效率η从0.85%提高到1.93%,短路电流密度Jsc和填充因子FF也有不同程度的改善;在电池的活性层与Al电极间沉积一定厚度的PCBM阴极修饰层也能改善电池的性能,当PCBM厚度为3nm时,聚合物太阳电池在100mW.cm-2强度光照下,Voc为0.59V,Jsc为6.43mA.cm-2,FF为55.1%,η为2.09%。 相似文献
2.
介绍了聚合物太阳电池的一般原理、性能表征,以及聚合物/量子点太阳电池结构,重点列举了有机及无机量子点在聚合物太阳电池中的应用,最后提出了改善聚合物/量子点太阳电池效率的方法。 相似文献
3.
4.
研究了Au纳米颗粒表面等离激元增强聚噻吩(P3HT)与富勒烯衍生物(PCBM)共混体系聚合物太阳电池的光电转换效率。Au纳米颗粒表面由双十烷基二甲基溴化铵(DDAB)修饰,能够均匀分散在活性层中。研究了Au纳米颗粒的质量分数对电池性能的影响,发现质量分数为1.2%时,电池性能最佳,转换效率高达3.76%,较未掺杂的参比电池相对提高约20%。掺入Au纳米颗粒后P3HT和PCBM共混膜光吸收显著增强,从而使电池外量子效率大大增加。电池效率的提升主要归结于Au纳米颗粒表面等离激元激发所引起的近场增强。 相似文献
5.
将广泛用于光伏器件的有机材料二胺(NPB)应用到光电器件中,是一种新的提升器件性能的思路。基于NPB材料的空穴传输特性,以3-己基噻吩的聚合物(P3HT)和富勒烯衍生物(PCBM)作为活性层,制备了不同阳极修饰层的太阳电池,研究了NPB修饰层对器件性能的影响。通过光照和黑暗条件下电学特性的比较以及拟合计算,分析了NPB修饰层对性能影响的内在原因,并对其厚度做了优化。结果表明:NPB厚度为5 nm时,器件的短路电流、开路电压和填充因子都有所提高。NPB修饰层可以改善界面接触,提高空穴的收集效率。 相似文献
6.
7.
9.
GaAs太阳电池的质子辐照和退火效应(英文) 总被引:2,自引:1,他引:1
对 Al Ga As/Ga As太阳电池进行了质子辐照和热退火实验 .质子辐照的能量为 32 5 ke V,辐照的剂量为 5×10 1 0— 1× 10 1 3cm- 2 .实验结果表明 ,质子辐照造成了 Ga As太阳电池光伏性能的退化 ,其中短路电流的退化比其它参数的退化更为明显 .退火实验结果表明 ,2 0 0℃的低温退火可以使得辐照后的电池的光伏性能得以部分恢复 .此外 ,实验结果还指出 ,在 Ga As太阳电池表面加盖一层 0 .5 mm的硼硅玻璃盖片可以明显地减少质子辐照对 Ga As太阳电池性能的损伤 相似文献
10.
戴君洁 《电子技术与软件工程》2018,(4):80
可再生能源可以说取之不尽用之不竭的。现阶段的技术手段达不到真正节能的目的。在我国,丰富的太阳能资源为我国发展太阳能利用相关产业提供了先天优势。但是传统的单晶硅太阳能无法实现大规模民用商业化。在这一背景之下,聚合物太阳能电池技术应运而生。聚合物太阳能电池成为目前太阳能利用领域的研究热点之一。本文说明了聚合物太阳电池机理,阐述了基于光学工程下实现高效聚合物太阳电池性能的有效措施。 相似文献
11.
D. M. Marathe H. S. Tarkas M. S. Mahajan G. S. Lonkar S. R. Tak J. V. Sali 《半导体学报》2016,37(9):093003-4
We here present a way of preparing the polymer:fullerene BHJ using dual feed method which can lead to formation of pure phases. In this report, we present results of our initial experiments in this direction. The effect of process parameters on the thickness and surface roughness of the active layer has been discussed. The structural and optical properties have been studied using the optical microscope, UV-visible spectroscopy and photoluminescence spectroscopy. Significant PL quenching indicates efficient charge separation in the BHJ formed using this technique. We have also compared the BHJ thin films prepared with this dual feed ultrasonic technique with the single feed spray method. The BHJ formed using this technique has been used as an active layer in OSC. 相似文献
12.
王丽娟;张伟;秦海涛;陈金星;李佳明;李野;宋贵才;张龙 《液晶与显示》2013,28(4):521-526
由于有机太阳能电池具有成本低、易加工、可以制作在柔性衬底上等优点备受人们关注。文中采用了溶液旋涂的加工方法,研究了基于聚3-乙基噻吩(P3HT)与富勒烯衍生物(PCBM)共混的有机聚合物体相异质结太阳能电池。在大气条件下完成了器件的制备与测试,通过旋涂条件、质量分数、退火条件等优化提升了器件的光电特性,获得开路电压(Voc)为0.62V,短路电流密度(Jsc)为14.97mA/cm2,填充因子(FF)为42.21%,电池效率(PCE)为3.92%的高效聚合物体相异质结太阳能电池。因此,通过对溶液加工条件的优化,可以提高薄膜质量,促进载流子传输和分离的能力。不仅可以提升有机聚合物体相异质结太阳能电池的效率,也为推进有机太阳能电池的量产化奠定了基础。 相似文献
13.
Pankaj Kumar Abhishek Sharma Dwijendra Pratap Singh 《Progress in Photovoltaics: Research and Applications》2013,21(5):950-959
Investigations on the effect of direction of voltage sweeps, on the current density–voltage (J–V) characteristics in polymer bulk‐heterojunction solar cells, based on the blend of poly(3‐hexylthiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM), are reported with time. On the freshly prepared device, the direction of the voltage sweep did not have any effect; however, as the device started degrading, the change in direction of the voltage sweep resulted into different characteristics. Analysis beyond complete degradation, when all the photovoltaic parameters reduced to zero, revealed some interesting results. The J–V characteristics, measured with voltage sweep from −ve to +ve voltage, both in the dark and under illumination, were observed to pass through the second quadrant. On the other hand, with the change in the direction of voltage sweep, viz. from +ve to −ve voltage, the characteristics both in the dark and under illumination passed through the fourth quadrant. These results have been explained on the basis of polarization of the degraded active layer due to applied external voltage. This is an important effect and is observed to depend on the applied voltages during performance evaluation and becomes more prominent with time. This effect puts a question mark on the correctness of the method for calculation of the parameters of a degraded device. Studies on degradation of P3HT : PCBM solar cells showed that both the short circuit current density (Jsc) and the power conversion efficiency (η) decay exponentially, whereas the open circuit voltage (Voc) decays almost linearly with time. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
Femto-second laser irradiation on P3HT:PCBM solutions have been demonstrated to have a significant impact on the conformational structures and photovoltaic performance of the resultant thin films. The crystallinity and edge-on/face-on conformations of P3HT and the aggregation of PCBM can be manipulated by controlling the wavelength (400–800 nm) and illumination duration (1–3 h) of the lasers. Grazing incidence wide- and small-angle X-ray scattering (GIWAXS and GISAXS) have been simultaneously utilized to characterize the nanostructures of the P3HT:PCBM blend films spin-cast from pristine and laser-irradiated solutions. The results show that the crystallinity, π-π* stacking and face-on conformations of P3HT can be enhanced as a result of the laser irradiation at 500 nm for 3 h. Furthermore, the diffusion and aggregation of PCBM molecules are suppressed by the photo-induced dimerization, as evidenced by the Raman spectra of the films cast from laser-irradiated PCBM solutions. The time-resolved fluorescence decay profiles show the charge transfer efficiency is improved, which may correlate to the supramolecular ordering of the polythiophene chains and the optimized phase separation in P3HT:PCBM composite. In the P3HT:PCBM active layer of the organic solar cells, more efficient charge transport and fine interpenetrating networks can be achieved due to the improved conformational microstructures. Consequently, the short-circuit current densities and power conversion efficiencies can be enhanced in organic solar cells based on the laser-irradiation processed P3HT:PCBM solutions. 相似文献
15.
Authenticity of conventional circuit model, to interpret the characteristics of polymer solar cells (PSCs) is examined. Conventional circuit model is found to be quite limited, and various assumptions used there are not valid for PSCs. By understanding the nature of photovoltaic characteristics, through detailed investigations, we developed an improved circuit model, which explains correctly the behavior of PSCs under different environmental conditions. Investigations are carried out on the solar cells, made of the blend of regioregular poly(3‐hexylethiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM). The model is developed by treating both the dark and illuminated characteristics separately, even the characteristics were dealt with separately in reverse and forward biases. The formulated equivalent circuit model helps us in explaining many other important features, observed in the characteristics of PSCs. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
Semiconducting conjugated polymers have drawn a great deal of attention over the past decade due to their solution processability and potential use in roll to roll fabrication of organic solar cells. Here, we report the effect of solvent vapor pressure on poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) blade coated inverted solar cells using ZnO as the electron transporting layer and MoO3 as the hole transporting layer. The resultant morphology and device performance are investigated for devices processed from solvents with varied vapor pressure and a mixed solvent. We report that the use of a mixed solvent system is advantageous for controlling the initial vapor pressure of the processing solution, thereby controlling the phase separated morphology between P3HT and PCBM which impacts ultimate solar cell performance. 相似文献