共查询到18条相似文献,搜索用时 46 毫秒
1.
推荐系统运用统计和知识发现技术在实时交互系统中提供产品推荐,并且已经在电子商务中取得了较广泛的应用。本文中我们介绍了一种不同于以往的推荐产生算法,称之为改进的聚类邻居协同过滤推荐算法,试验表明我们的算法比k-邻近点算法和聚类邻居算法具有更好的效果。 相似文献
2.
协同过滤算法应用于个性化推荐系统中取得了巨大成功,它是通过用户项目评分数据,以用户之间或者项目之间相互协作的方式来产生推荐。然而,邻居用户的相似度计算不精确一直是阻碍推荐系统推荐精度进一步提高的主要因素。从提高用户间相似度计算精度出发,提出了一种改进算法,该算法通过考虑不同特征、加强平均值影响、惩罚热门项目的比重,对用户的相似度计算方法进行改进,以期生成更加合理的邻居用户集,最后,根据评分预测公式进行预测,最终产生推荐。在MovieLens数据集上的实验表明,改进算法计算用户间的相似度更加精确,推荐算法的预测精确度有了显著提高。 相似文献
3.
为解决在基于用户的推荐算法中,用户相似度计算精度较低、缺乏个性化等问题,提出一种基于改进用户属性评分的协同过滤算法(IUAS-CF)。针对个性用户、偏执用户等在评分矩阵上存在的评价值范围差异,基于现有的相似度计算公式设计一种适应于计算个性化用户相似度的距离度量公式;针对用户自身存在影响用户抉择的用户属性,设法将用户属性评分量化,将其引入相似度计算公式中。实验结果表明,IUAS-CF算法能更真实地反映用户评分偏好,提高了推荐系统的推荐精度,更好地满足了用户对系统的个性化需求。 相似文献
4.
5.
基于双重邻居选取策略的协同过滤推荐算法 总被引:1,自引:0,他引:1
协同过滤是电子商务推荐系统中应用最成功的推荐技术之一,但是传统的协同过滤推荐算法存在推荐精度低和抗攻击能力差的缺陷.针对这些问题,提出了一种基于双重邻居选取策略的协同过滤推荐算法.首先基于用户相似度计算的结果,动态选取目标用户的兴趣相似用户集.然后提出了一种用户信任计算模型,根据用户的评分信息,计算得到目标用户对兴趣相似用户的信任度,并以此作为选取可信邻居用户的依据.最后,利用双重邻居选取策略,完成对目标用户的推荐.实验结果表明该算法不仅提高了系统推荐精度,而且具有较强的抗攻击能力. 相似文献
6.
7.
协同过滤推荐中基于用户分类的邻居选择方法 总被引:2,自引:1,他引:1
为了提高推荐系统的推荐结果质量,找到目标用户恰当的邻居是协同过滤算法中非常关键的一个环节。网络中的用户可以分为专家型用户、可信用户与兴趣相似用户三个维度,由于不同类型的邻居对用户的影响及用户对不同邻居的依赖倾向的不同,因此利用岭回归分析估计用户对于这三类用户的主观倾向,即邻居选择权重,由此获得目标用户邻居集合,进而产生推荐,通过利用标准F1方法与传统推荐方法对比实验分析表明,推荐结果的质量显著提高;同时利用K-means方法对用户作聚类分析及类别之间的方差齐性分析,并与行为研究结果相对比,验证了推荐结果的可信性。 相似文献
8.
协同过滤是迄今为止个性化推荐系统中采用最广泛最成功的推荐技术;但现有方法是将用户不同时间的兴趣等同考虑;时效性不足;而且推荐精度也有待进一步提高。鉴于此提出一种改进的协同过滤算法;针对用户近邻计算和项目评分的预测两个关键步骤;提出基于项目相关性的用户相似性计算方法;以便邻居用户更准确;同时在预测评分的过程中增加时间权限;使得接近采集时间的点击兴趣在推荐过程中具有更大权值。实验结果表明;该算法在提高了推荐精度的同时实现了实时推荐。
相似文献
相似文献
9.
基于时间加权的协同过滤算法 总被引:1,自引:0,他引:1
协同过滤是个性化推荐系统中采用最广泛的推荐技术,但已有的方法是将用户不同时间的兴趣等同考虑,时效性不足。针对此问题,提出了一种改进的协同过滤算法,使得越接近采集时间的点击兴趣,在推荐过程中具有更大的权值,从而提高了推荐的准确性。 相似文献
10.
11.
协同过滤系统是目前最成功的一种推荐系统,但是传统的协同过滤算法没有考虑用户兴趣会随时间发生变化以及类似特征用户对用户相似度精度具有影响等因素,导致推荐质量较差。该文结合用户兴趣变化和用户特征两个因素,提出了新的用户之间相似度计算方法用来提高协同过滤推荐质量。 相似文献
12.
针对传统的协同过滤推荐系统存在的数据稀疏性和忽略时间影响的问题,本文提出了基于云模型的时间修正协同过滤推荐算法,利用云模型建立用户对项目特征属性的偏好度,并建立指数时间函数对项目的评分相似度沿时间维加以修正。算法采用美国GroupLens项目组提供的数据集进行实验。结果表明,该算法使得项目的评分相似度度量更趋准确,系统推荐质量有较明显的提高。 相似文献
13.
针对传统协同过滤推荐算法在数据稀疏的情况下存在的性能缺陷和相似性度量方法的不足,为了提高推荐精度,改进原算法得到了一种基于多层次混合相似度的协同过滤推荐算法。该算法主要分为三个不同的层次:首先采用模糊集的概念将用户评分模糊化,计算用户的模糊偏好,并结合用户评分的修正余弦相似度和用户评分的Jarccad相似度总体作为用户评分相似度;再对用户评分进行分类来预测用户对项目类别的兴趣程度,从而计算出用户兴趣相似度;然后利用用户的特征属性来预测用户之间的特征相似度;其次根据用户评分数量来动态地融合用户兴趣相似度及用户特征相似度;最后融合三个层次的相似度作为用户混合相似度的结果。利用MovieLens公用数据集对改进前后的算法进行对比实验,结果表明:当在邻居集合数量较少时,改进的混合算法相对修正余弦相似度算法的平均绝对偏差(MAE)下降了5%左右;较改进的修正的Jaccard相似性系数的协同过滤(MKJCF)算法也存在略微的优势,随着邻居集合数的增加MAE也平均下降了1%左右。该算法采用多层次的推荐策略提高了用户的推荐精度,有效地缓解了数据稀疏性问题和单一度量方法的影响。 相似文献
14.
随着云计算时代的到来,应用数据量剧增,个性化推荐技术日趋重要.然而由于云计算的超大规模以及分布式处理架构等特点,将传统的推荐技术直接应用到云计算环境时会面临推荐精度低、推荐时延长以及网络开销大等问题,导致推荐性能急剧下降.针对上述问题,提出一种云计算环境下基于协同过滤的个性化推荐机制RAC.该机制首先制定分布式评分管理策略,通过定义候选邻居(candidate neighbor, CN)的概念筛选对推荐结果影响较大的项目集,并构建基于分布式存储系统的2个阶段评分索引,保证推荐机制快速准确地定位候选邻居;在此基础上提出基于候选邻居的协同过滤推荐算法(candidate neighbor-based distribited collaborative filtering algorithm, CN-DCFA),在候选邻居中搜索目标用户已评分项目的k近邻,预测目标用户的推荐集top-N.实验结果表明,在云计算环境下RAC拥有良好的推荐精度和推荐效率. 相似文献
15.
16.
17.
协同过滤面临着用户评分数据极为稀疏的问题,为改善不同稀疏程度数据上的推荐效果,提出基于直接评分与间接评分的协同过滤算法。针对直接评分,定义加权用户相似性和加权项目相似性度量标准,构造直接推荐用户集合与直接推荐项目集合,给出直接评分权重的计算方法;针对间接评分,构造相似评分集合,定义评分相似性度量标准。定义综合评分权重,在直接评分与间接评分的基础上得到最终推荐结果。大量实验结果表明,该算法在不同稀疏程度的数据上均具有较高的推荐质量。 相似文献
18.
随着网络信息资源的迅速增加,如何及时准确地获取所需信息是现代网络信息过滤技术需要解决的主要问题.为了给用户提供更准确的信息,提出了一种基于用户反馈的智能合作过滤模型(Agent collaborative filtering model based on users'feedback,ACFM)和用户兴趣模型,该模型通过隐式反馈和显式反馈这两种用户兴趣反馈学习实现合作过滤.实验结果表明,ACFM在预测用户兴趣的效果和推荐搜索信息的准确率方面比传统的搜索引擎有明显改善. 相似文献