首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 168 毫秒
1.
采用热重分析法研究富氧燃烧(O_2/CO_2)气氛、O_2体积分数和煤粉活性对褐煤、烟煤、无烟煤3种煤粉燃烧性能的影响,并进行分温度区间的燃烧反应动力学分析。结果表明:褐煤和无烟煤发生非均相着火,烟煤发生均相-非均相着火;相比空气气氛,O_2体积分数相同的O_2/CO_2气氛下煤粉的着火温度和燃尽温度升高,燃尽时间延长;在O_2/CO_2气氛下,当O_2体积分数增大时,煤粉着火温度和燃尽温度降低,燃尽时间缩短;相同气氛下,煤粉活性显著影响其着火和燃尽;根据综合燃烧特性指数判断,增大O_2体积分数显著改善了煤粉的燃尽特性;在低温区,煤粉燃烧属于0.3级反应,在高温区则为1~2.5级反应。  相似文献   

2.
搭建小型增压富氧燃烧鼓泡床试验台,以试验结果为基础结合偏最小二乘法对增压富氧燃煤NO生成特性进行了研究和分析.试验结果表明,压力对NO排放规律的影响与反应气氛中的氧体积分数有关.在增压空气燃烧时,随着系统总压的升高,燃烧过程中NO的生成量有明显降低,但在增压富氧燃烧时,系统总压升高后,燃煤NO生成量反而逐渐增加.分析显示,在加压燃烧过程中,挥发分燃烧速率增加对煤粉热解的促进作用与CO和焦炭对NO的还原作用共同决定了燃煤NO的生成特性.在低氧气体积分数时,系统总压升高后CO和焦炭对NO的还原作用强于燃料氮的氧化作用,导致燃料氮的NO转化率逐渐下降,但是在高氧体积分数时,系统总压升高后,快速燃烧的挥发分使得挥发分氮的释放和转化强于CO和焦炭的还原作用,导致燃料氮的NO转化率逐渐增加.  相似文献   

3.
O_2/CO_2气氛下煤粉燃烧中NO_x转化机理的CHEMKIN模拟   总被引:1,自引:0,他引:1  
采用CHEMKIN软件中的PFR模型对不同气氛(O_2/CO_2和O_2/N_2)下煤粉燃烧过程中燃料氮NH_3的转化和NO_x生成机理进行模拟,并在模型中首次引入外部的湿烟气再循环来模拟实际富氧煤粉燃烧过程中NO_x的生成机理及影响因素。通过CHEMKIN模拟可以较为准确地定量分析富氧燃烧条件下燃料N的转化规律,富氧燃煤过程中引入再循环烟气可降低燃料N向NO的转化率,其中碳黑与NO的反应对再循环烟气中NO的还原起主要作用。  相似文献   

4.
为研究采用富氧燃烧方式煤粉锅炉的燃烧特性,利用Fluent软件对一台T型煤粉锅炉的富氧燃烧过程进行了数值模拟,得到了一次风含氧体积分数变化时炉膛内温度场、速度场和烟气各组分物质的量浓度的分布.结果表明:富氧条件下整个炉膛温度水平高于空气助燃条件下;当含氧体积分数由21%增大至33%时,炉膛平均温度由1 413.2K升高为1 447.1K;当含氧体积分数增大至27%时,炉膛平均温度变化较明显,达到1 435.6K;当含氧体积分数大于29%时,炉膛平均温度变化不明显;变一次风风量富氧燃烧方式的含氧体积分数最佳范围为27%~29%.  相似文献   

5.
《可再生能源》2017,(2):159-165
为了研究燃烧气氛、进口氧气浓度、生物质掺混比、燃烧温度以及过量氧气系数对循环流化床(CFB)富氧燃烧过程中NO,N_2O排放特性以及燃料中N的转化特性的影响,以棉秆和大同烟煤为燃料,在50 k W循环流化床燃烧试验台上进行了空气气氛和O_2/CO_2气氛下的生物质与煤混合燃烧试验。试验结果表明:与空气气氛相比,O2/CO2气氛下,NO,N_2O的排放量和燃料中N的转化率均降低;随着进口氧气浓度和燃烧温度的升高,NO的排放量均升高,N_2O的排放量和燃料中N的转化率均降低;随着生物质掺混比的增大,NO的排放量和燃料中N的转化率降低,N_2O的排放量升高;NO,N_2O的排放量以及燃料中N的转化率均随过量氧气系数增大而升高。  相似文献   

6.
采用热重实验系统进行了煤粉在O_2/N_2和O_2/CO_2气氛下的燃烧实验,研究了氧体积分数和粒径对燃烧特性的影响.实验结果表明,氧体积分数越高、粒径越小,煤粉的燃烧特性越好.在氧体积分数较高时,煤粉在O_2/CO_2气氛下的反应比在O_2/N_2气氛下进行得慢;而氧体积分数较低时,煤粉在O_2/CO_2气氛下的反应比在O_2/N_2气氛下进行得快.此外,采用Coats-Redfern积分法、Flynn-Wall-Ozawa积分法和Kissinger-Akahira-Sunose积分法对煤粉在程序升温过程中的燃烧反应做了相应的动力学分析.结果表明,O_2/N_2和O_2/CO_2气氛下不同氧体积分数时的煤粉燃烧反应动力学参数表观活化能E和指前因子A之间具有动力学补偿效应.煤粉燃烧过程中在同一转化率下的表观活化能E随其粒径的减小而降低.  相似文献   

7.
分析总结了不同规模燃烧试验装置上获得的富氧煤粉燃烧研究成果及进展,并对今后富氧煤粉燃烧的发展进行了展望。实验室规模研究表明,在相同O2浓度条件下O2/CO2气氛煤粉燃烧气体和颗粒温度比O2/N2气氛低,燃尽时间延长,但提高O2浓度可明显改善煤粉着火及燃烧特性。中试规模研究表明,再循环烟气比例、一、二次风O2浓度和二次风预热温度对富氧燃烧煤粉着火及火焰稳定性有重要影响。要达到与空气煤粉燃烧相匹配的燃烧与传热效果,O2/CO2气氛中O2浓度一般在27%~35%,此值主要与煤种有关。  相似文献   

8.
利用自制恒温热重实验系统,研究了模拟炉膛烟气环境(即高温低氧气氛)下煤粉的燃烧特性.结果表明:煤粉突然置于高温环境中,失重曲线存在一个转折,随着煤化程度降低,这一现象更加明显;煤粉在1 500℃下燃烧剧烈,900℃下的燃尽时间约为1 500℃下的6倍,1 300℃以上时温度对燃烧反应初期的燃烧特性影响较小;1 300℃相对于800℃,氧气体积分数升高幅度相同时燃烧失重速率增大幅度减小;当水蒸气体积分数达到10%时,其对燃烧反应初期挥发分析出燃烧的促进作用较为明显;当气氛中CO2体积分数升高到15%后,继续升高CO2体积分数,燃烧失重速率减小.  相似文献   

9.
富氧环境下煤粒燃烧特性的热重实验   总被引:1,自引:0,他引:1  
采用热重法对粒径1,mm左右的3种典型煤种的燃烧特性进行实验研究,对不同氧体积分数下(10%、21%、30%、60%、80%)煤粒的TG和DTG曲线以及氧体积分数对综合燃烧特性指数的影响进行分析.实验结果表明,煤粒的着火温度Ti和燃尽温度Tf均随着氧体积分数的升高而降低,氧体积分数增大有利于提高煤粒的燃烧速度和燃烧性能.研究结果对循环流化床锅炉富氧燃烧技术的设计和优化提供重要参考依据.  相似文献   

10.
利用非等温热重分析法对两种烟煤的热解特性及富氧下的燃烧特性进行研究.实验结果表明,煤粉中低温下的热解行为对其富氧气氛下的着火机理有明显影响.挥发分初析温度低、热解特性指数D大的煤,随着氧体积分数的增加,着火方式逐渐由非均相转变为均相.而挥发分初析温度高、D较小的煤,着火方式则无明显变化.热解活性高的煤,在着火机理转变后,着火温度显著降低,但燃尽温度基本不受影响.氧体积分数提高后两种煤粉的燃烧特性指数S都有所增大,但相同氧体积分数下不同煤种之间的S相差不多,说明着火机理的改变对S无明显影响.  相似文献   

11.
The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870℃ in both N_2 and CO_2 atmospheres, while further mass loss occurred in CO_2 atmosphere at higher temperatures due to char-CO_2 gasification. Replacement of N_2 in the combustion environment by CO_2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose(KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O_2 concentration increasing, the activation energies decreased.  相似文献   

12.
In this study, combustion from the co-firing of coal and wood biomass, and thermal characteristics such as ignition temperature, burn-out temperature, and activation energy were discussed using a thermogravimetric analyzer (TGA). We investigated the effects of biomass blending with two kinds of pulverized coal (bituminous Shenhua, and sub-bituminous Adaro) under air and oxy-fuel conditions. The coal fraction in the blended samples was set to 1, 0.8, and 0.5. The oxygen fraction in the oxidant was set to 0.21, 0.3, 0.5, and 0.8. The ignition temperature was governed by the fuel composition, particularly in the blended biomass which has a much higher content of volatile matter comparing to coal. However, the burnout temperature, which shows a strong relationship with char combustion, depended on the oxidant ingredients rather than on the fuel components. Thermal characteristics such as ignition, burnout temperature, reaction region, and heat flow were very similar between air and a 0.3 oxygen concentration under oxy-fuel conditions with Shenhua coal.  相似文献   

13.
High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.  相似文献   

14.
For oxy-combustion with flue gas recirculation, elevated levels of CO2 and steam affect the heat capacity of the gas, radiant transport, and other gas transport properties. A topic of widespread speculation has concerned the effect of gasification reactions of coal char on the char burning rate. To asses the impact of these reactions on the oxy-fuel combustion of pulverized coal char, we computed the char consumption characteristics for a range of CO2 and H2O reaction rate coefficients for a 100 μm coal char particle reacting in environments of varying O2, H2O, and CO2 concentrations using the kinetics code SKIPPY (Surface Kinetics in Porous Particles). Results indicate that gasification reactions reduce the char particle temperature significantly (because of the reaction endothermicity) and thereby reduce the rate of char oxidation and the radiant emission from burning char particles. However, the overall effect of the combined steam and CO2 gasification reactions is to increase the carbon consumption rate by approximately 10% in typical oxy-fuel combustion environments. The gasification reactions have a greater influence on char combustion in oxygen-enriched environments, due to the higher char combustion temperature under these conditions. In addition, the gasification reactions have increasing influence as the gas temperature increases (for a given O2 concentration) and as the particle size increases. Gasification reactions account for roughly 20% of the carbon consumption in low oxygen conditions, and for about 30% under oxygen-enriched conditions. An increase in the carbon consumption rate and a decrease in particle temperature are also evident under conventional air-blown combustion conditions when the gasification reactions are included in the model.  相似文献   

15.
16.
The spouted-fluidized bed is modified from the classical fluidized bed device, which combines the features of spouted and fluidized beds. In the present work, the performance of oxy-fuel spouted-fluidized bed combustion with under bed feeding and its effect on NO emission were systematically investigated. The results revealed that it was feasible to use a spouted-fluidized bed combustor for oxy-fuel combustion with real flue gas recycling. The transition from air combustion to oxy-fuel combustion was smooth and the concentration of CO_2 in the flue gas could be as high as 90% steadily(dry base). Increasing the reaction temperature exhibited a negative effect on NO emission. Compared with that under the shallow bed, the concentration of NO in the flue gas was lower under the deep bed condition. Besides, the utilization of crush particles was favorable for suppressing NO emission because of the promoted mixing between coal particles and solid bed materials. Furthermore, the addition of limestone was proven to undesirably increase the NO emission during oxy-fuel spouted-fluidized bed combustion.  相似文献   

17.
Oxygen-fuel combustion is a promising technology for CO2 emission reduction. The high-temperature entrained flow reactor and high-temperature drop tube furnace were used to analyses the formation and O2/CO2 combustion characteristics of real-environment coal char in high-temperature oxy-fuel conditions. It proposed “inflection point standard” of high-temperature flame method for the preparation of real-environmental oxy-fuel coal char according to the flame method. The results show that the ratios of C=O/C-O and C=O/Car increase in the coal char compared with the raw coals. The trend of C=O/Car in oxy-fuel condition is opposite to that in the inert atmosphere, due to the effect of high-concentration CO2. To achieve the burnout rate similar to air combustion for coal char, with the increase of coal rank, the O2 concentration should be enhanced. The optimal O2 concentration for the oxy-fuel combustion of JC anthracite is 30%, while that of other low-rank coals could be lower than 30%. The combustion characteristic of JC anthracite is with the highest sensitivity to temperature and O2 concentration.  相似文献   

18.
O2/CO2气氛下煤粉燃烧反应动力学的试验研究   总被引:8,自引:2,他引:8  
在热重分析仪上进行了模拟空气气氛及不同O2浓度(21%、30%、40%、80%)的O2/CO2气氛下3种不同品质煤粉(龙岩无烟煤、贵州烟煤、元宝山褐煤)的燃烧特性试验,确定了3种煤粉的燃烧特征参数并进行了动力学分析.结果表明,O2/CO2气氛下煤粉的燃烧分布曲线与O2/N2气氛下有明显不同,在相同O2浓度的条件下,O2/CO2气氛下煤粉燃烧速率低,燃尽时间长;随着O2浓度的增加,燃烧DTG曲线向低温区偏移,着火温度及燃尽温度降低,燃尽时间缩短,可燃性指数及燃尽指数明显提高;O2/CO2气氛下煤粉燃烧基本属于一级反应,动力学参数随燃烧气氛与煤质变化的不同有较大差异.  相似文献   

19.
The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O2-79%CO2, 30%O2-70% O2 and 35%O2-65%CO2) were compared with those attained in air. The replacement of CO2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O2-79%CO2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号