首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we synthesized Pt nanoparticles supported on carbon Vulcan (Pt/C), a cheap and high surface area carbon. Compared to the commercialized Pt/C, which showed a moderate activity towards the oxidation of H2O2 and a high catalytic activity to the interferences specially AP; the synthesized Pt/C illustrated a high activity towards the oxidation of H2O2 and negligible response towards the oxidation of the interferences at high applied potentials (>0.6 V). This difference in the catalytic behavior was attributed to the homogenous distribution of the synthesized Pt nanoparticles in the supporting carbon Vulcan as well as, to their relatively bigger size (8-9 nm) compared to (1-2 nm) estimated for the commercialized Pt/C. This particular and interesting behavior of the synthesized Pt/C was used to encapsulate glucose oxidase along with a small amount of Nafion for the manufacturing of a glucose sensor. The resulting glucose sensor has a high sensitivity of 1.25 μA/mM mm2, which compares very well with other glucose sensors based on precious metal nanoparticles and carbon nanotubes, an extended linear range up to 45 mM without using any outer polymer layer, low interference from endogenous species, short response time (<5 s), was stable for at least 1 month and, found to be dependable for glucose determination in human serum.  相似文献   

2.
Organic thin film transistor (OTFT) chemical sensors rely on the specific electronic structure of the organic semiconductor (OSC) film for determining sensor stability and response to analytes. The delocalized electronic structure is influenced not only by the OSC molecular structure, but also the solid state packing and film morphology. Phthalocyanine (H2Pc) and tetrabenzoporphyrin (H2TBP) have similar molecular structures but different film microstructures when H2Pc is vacuum deposited and H2TBP is solution deposited. The difference in electronic structures is evidenced by the different mobilities of H2TBP and H2Pc OTFTs. H2Pc has a maximum mobility of 8.6 × 10−4 cm2 V−1 s−1 when the substrate is held at 250 °C during deposition and a mobility of 4.8 × 10−5 cm2 V−1 s−1 when the substrate is held at 25 °C during deposition. Solution deposited H2TBP films have a mobility of 5.3 × 10−3 cm2 V−1 s−1, which is consistent with better long-range order and intermolecular coupling within the H2TBP films compared to the H2Pc films. Solution deposited H2TBP also exhibits a textured film morphology with large grains and an RMS roughness 3-5 times larger than H2Pc films with similar thicknesses. Despite these differences, OTFT sensors fabricated from H2TBP and H2Pc exhibit nearly identical analyte sensitivity and analyte response kinetics. The results suggest that while the interactions between molecules in the solid state determine conductivity, localized interactions between the analyte and the molecular binding site dominate analyte binding and determine sensor response.  相似文献   

3.
In this study, poly(3,4-ethylenedioxythiophene), PEDOT, was electropolymerized on a sensing chip to entrap glucose oxidase (GOD). The interdigitated array (IDA) electrode and microfluidic channel of the sensing chip was fabricated by photolithography. The IDA electrodes consist of two working electrodes in which one (WE1) was the enzyme-modified electrode and the other was a Pt (WE2) for eliminating noise effect. The microfluidic channel was formed on etched silicon by PDMS (poly(dimethylsiloxane)). In the flow injection analysis, a 0.7 V (vs. Ag/AgCl) was set on enzyme electrode to detect the catalytic product, H2O2, and the sensing signal was calibrated using the passed charge rather than the peak current. The linear relationship between the charges and the glucose concentrations, ranging from 1 to 10 mM, was obtained with a sensitivity of 157 μC cm−2 mM−1. Besides, the response time and the recovery time were about 15 and 35-75 s, respectively. In real human sample test, the error of single-potential and bi-potential were about 140% and 13%, respectively, comparing to the standard value, indicating that the WE2 can lower the interference effect in this system.  相似文献   

4.
The present work describes the electrocatalytic behavior of phosphotungstate-doped glutaraldehyde-cross-linked poly-l-lysine (PLL-GA-PW) film electrode towards reduction of hydrogen peroxide (H2O2) in acidic medium. The modified electrode was prepared by means of electrostatically trapping the phosphotungstate anion into the cationic PLL-GA coating on glassy carbon electrode. The PLL-GA-PW film electrode showed excellent electrocatalytic activity towards H2O2 reduction in 0.1 M H2SO4. Under the optimized conditions, the electrochemical sensor exhibited a linear response for H2O2 concentration over the range 2.5 × 10−6 to 6.85 × 10−3 M with a sensitivity of 1.69 μA mM−1. The curvature in the calibration curve at high concentration is explained in terms of Michaelis-Menten (MM) saturation kinetics, and the kinetics parameters calculated by three different methods were compared. The PLL-GA-PW film electrode did not respond to potential interferents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL-GA-PW film electrode allowed selective determination of H2O2. Finally, the proposed electrochemical sensor was successfully applied to determine H2O2 in commercially available antiseptic solution and soft-contact lenses cleaning solution and the method has been validated using independent estimation by classical potassium permanganate titration method. Major advantages of the method are simple electrode fabrication, stability and high selectivity towards hydrogen peroxide.  相似文献   

5.
ZnO hollow sphere with porous shell has been prepared by co-precipitation method using Zn(NO3)2·6H2O and (CH2)6N4 as reactants, sodium citrate as surfactant. The BET surface area of as-prepared ZnO hollow sphere sample is 41.84 m2/g. The response of gas sensor made from the obtained ZnO hollow sphere reaches 7.4 to 10 ppm ammonia, with a response time of 10 s, implying the potential for practical applications.  相似文献   

6.
SnCl2 (solution) was spin coated on soda lime glass and Al2O3 substrate to obtain nano-particulate tin oxide film, directly by sintering at 550 °C for 40 minutes (min). The surface morphology and crystal structure of the tin oxide films were analyzed using atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of SnO2 nanostructure was determined from UV-vis and found to be ?3 nm. These films were tested for sensing H2 concentration of 0.1-1000 ppm at optimized operating temperature of 265 °C. The results showed that sensitivity (Rair/Rgas per ppm) goes on increasing with decreasing concentration of test gas, giving concentration dependent changes. Special studies carried out at low concentration levels (0.1-1 and 1-10 ppm) of H2, give high sensitivity (200 × 10−3/ppm) for lowest concentration (0.1-1 ppm) of H2. The selectivity for H2 against relative humidity (RH), CO2, CO and LPG gases is also good. The sensor, at operating temperature of 200 °C, is showing nearly zero response to 300 ppm of H2, and offering response to acetone vapour of 11 ppm. Selectivity for acetone against RH% and CO2 was also studied. These sensors can be used as H2 sensor at an operating temperature of 265 °C, and as an acetone sensor at the operating temperature of 200 °C.  相似文献   

7.
Barium titanate (BaTiO3) nanofibers were synthesized by electrospinning and calcination techniques. Two direct current (DC) humidity sensors with different electrodes (Al and Ag) were fabricated by loading BaTiO3 nanofibers as the sensing material. Compared with the Al electrode sensor, the Ag electrode sensor exhibits larger sensitivity and quicker response/recovery. The current of Al electrode sensor increases from 4.08 × 10−9 to 1.68 × 10−7 A when the sensor is switched from 11% to 95% relative humidity (RH), while the values are 2.19 × 10−9 and 3.29 × 10−7 A for the Ag electrode sensor, respectively. The corresponding response and recovery times are 30 and 9 s for Al electrode sensor, and 20 and 3 s for Ag electrode sensor, respectively. These results make BaTiO3 nanofiber-based DC humidity sensors good candidates for practical application. Simultaneously, the comparison of sensors with different electrode materials may offer an effective route for designing and optimizing humidity sensors.  相似文献   

8.
An electrochemical biosensor for determination of hydrogen peroxide (H2O2) has been developed by the hybrid film of poly(methylene blue) and FAD (PMB/FAD). The PMB/FAD hybrid film was performed in PBS (pH 7) containing methylene blue and FAD by cyclic voltammetry. Repeatedly scanning potential range of −0.6-1.1 V, FAD was immobilized on the electrode surface by electrostatic interaction while methylene blue was electropolymerized on electrode surface. This modified electrode was found surface confined and pH dependence. It showed good electrocatalytic reduction for H2O2, KBrO3, KIO3, and NaClO as well as electrocatalytic oxidation for NADH. At an applied potential of −0.45 V vs. Ag/AgCl, the sensor showed a rapid and linear response to H2O2 over the range from 0.1 μM to 960 μM, with a detection limit of 0.1 μM and a significant sensitivity of 1109 μA mM−1 cm−2 (S/N = 3). It presented excellent stability at room temperature, with a variation of response current less than 5% over 30 days.  相似文献   

9.
We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 μW and an average dynamic power of 625 μW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.  相似文献   

10.
The SnO2 nanowires (NWs) network gas sensors were fabricated on a micro-electrode and heater suspended in a cavity. The sensors showed selective detection to C2H5OH at a heater power during sensor operation as low as 30-40 mW. The gas response and response speed of the SnO2 NWs sensor to 100 ppm C2H5OH were 4.6- and 4.7-fold greater, respectively, than those of the SnO2 nanoparticles (NPs) sensor with the same electrode geometry. The reasons for these enhanced gas sensing characteristics are discussed in relation to the sensing materials and sensor structures.  相似文献   

11.
The room temperature response characteristics of SnO2 thin film sensor loaded with platinum catalyst clusters are investigated for LPG under the exposure of ultraviolet radiation. The SnO2-Pt cluster sensor structures have been prepared using rf sputtering. Combined effect of UV radiation exposure (λ = 365 nm) and presence of Pt catalyst clusters (10 nm thick) on SnO2 thin film sensor surface is seen to lead to an enhanced response (4.4 × 103) for the detection of LPG (200 ppm) at room temperature whereas in the absence of UV illumination a comparable response (∼5 × 103) could be obtained but only at an elevated temperature of 220 °C. The present study therefore investigates the effect of UV illumination on LPG sensing characteristics of SnO2 sensors loaded with Pt clusters of varying thickness values. Results indicate the possibility of utilizing the sensor structure with novel dispersal of Pt catalyst clusters on SnO2 film surface for efficient detection of LPG at room temperature under the illumination of UV radiations.  相似文献   

12.
This paper reports on a novel optical fiber based sensor for hydrogen detection at high temperatures (>600 °C). The optical sensor consists of a perovskite-type ceramic, SrCe0.95Tb0.05O3−δ, as the sensing material, which is coated on the cladding layer of long period fiber gratings. Upon exposure to hydrogen, the reduction of Ce4+ to Ce3+ on the surface of SrCe0.95Tb0.05O3−δ particle causes decrease in its refractive index. As a result, the resonance wavelength of long period fiber gratings shifts to a higher value. The rate of the shift is dependent on the hydrogen partial pressure and can be used as the sensing signal. The high temperature optical H2 sensor exhibits high sensitivity for H2 detection at a partial pressure of 0.005 atm, and a short response time. The sensor is reversible as exposing the sensor to air oxidizes Ce3+ to Ce4+.  相似文献   

13.
Gas sensors were designed and fabricated using oxide nanofibers as the sensing materials on micro platforms using micromachining technology. Pure and Pt doped SnO2 nanofibers were prepared by electrospinning and their H2S gas sensing characteristics were subsequently investigated. The sensing temperatures of 300 and 500 °C could be attained at the heater powers of 36 and 94 mW, respectively, and the sensors showed high and fast responses to H2S. The responses of 0.08 wt% Pt doped SnO2 nanofibers to 4-20 ppm H2S, were 25.9-40.6 times higher than those of pure SnO2 nanofibers. The gas sensing characteristics were discussed in relation to the catalytic promotion effect of Pt, nano-scale morphology of electrospun nanofibers, and sensor platform using micro heater.  相似文献   

14.
Semiconducting SnO2 thin films having higher value of electrical conductivity have been deposited using RF sputtering technique in the reactive gas environment (30% O2 + 70% Ar) using a metallic tin (Sn) target for detection of oxidizing NO2 gas. The effect of growth pressure (12-18 mTorr) on the surface morphology and structural property of SnO2 film was studied using Atomic force microscopy (AFM), Scanning electron microscopy (SEM) and X-ray Diffraction (XRD) respectively. Film deposited at 16 mTorr sputtering pressure was porous with rough microstructure and exhibits high sensor response (∼2.9 × 104) towards 50 ppm NO2 gas at a comparatively low operating temperature (∼100 °C). The sensor response was found to increase linearly from 1.31 × 102 to 2.9 × 104 while the response time decrease from 12.4 to 1.6 min with increase in the concentration of NO2 gas from 1 to 50 ppm. The reaction kinetics of target NO2 gas on the surface of SnO2 thin film at the Sn sites play important role in enhancing the response characteristics at lower operating temperature (∼100 °C). The results obtained in the present study are encouraging for realization of SnO2 thin film based sensor for efficient detection of NO2 gas with low power consumption.  相似文献   

15.
Nanocrystalline WO3/TiO2-based powders have been prepared by the high energy activation method with WO3 concentration ranging from 1 to 10 mol%. The samples were thermal treated in a microwave oven at 600 °C for 20 min and their structural and micro-structural characteristics were evaluated by X-ray diffraction, Raman spectroscopy, EXAFS measurements at the Ti K-edge, and transmission electron microscopy. Nitrogen adsorption isotherms and H2 Temperature Programmed Reduction were also carried out for physical characterization. The crystallite and particle mean sizes ranged from 30 to 40 nm and from 100 to 190 nm, respectively. Good sensor response was obtained for samples with at least 5 mol% WO3 activated for at least 80 min. Ceramics heat-treated in microwave oven for 20 min have shown similar sensor response as those prepared in conventional oven for 120 min, which is highly cost effective. These results indicate that WO3/TiO2 ceramics can be used as a humidity sensor element.  相似文献   

16.
In this paper, we presented a carbon tetrachloride gas sensor with strong cataluminescence response based on Ag2Se nanomaterial, which was synthesized via the electrodeposition on the surface of Al foil by directly using a non-aqueous dimethyl sulfoxide (DMSO) solution with CH3COOAg and SeCl4. The deposited Ag2Se material was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the prepared Ag2Se material along with the Al foil substrate was employed to design the carbon tetrachloride gas sensor. Under the optimized conditions, the present gas sensor exhibited a broad linear range of 0.9-228 μg mL−1, with a limit of detection of 0.3 μg mL−1 (S/N = 3). The proposed gas sensor showed good characteristics with high selectivity, fast response and long lifetime.  相似文献   

17.
Sensing of carbon monoxide (CO) was carried out with ZnO-CuO and Pt/ZnO-CuO. Synthesized materials were characterized by temperature-programmed reduction (TPR), high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The composite materials of ZnO-CuO were found to have an active sensing center, The sensor response obtained for an optimized ratio of ZnO and CuO (1:1 weight ratio) yielded the highest response of 1.28 (Rco/Rair) for 1000 ppm of CO at room temperature; the response and recovery times were found to be 41 and 86 s, respectively. However, loading 1:1 ZnO-CuO with 0.4% Pt boosted the sensor response to 2.64 (Rco/Rair) for the same CO concentration. The sensor (0.4% Pt/ZnO-CuO) response was linear towards CO concentrations between 100 and 1000 ppm. In the Pt loaded case both the response and recovery times were found to be 81 s. A mechanism for CO sensor response was put forward with reference to CO adsorption and desorption.  相似文献   

18.
In situ SiO2-doped SnO2 thin films were successfully prepared by liquid phase deposition. The influence of SiO2 additive as an inhibitor on the surface morphology and the grain size for the thin film has been investigated. These results show that the morphology of SnO2 film changes significantly by increasing the concentration of H2SiF6 solution which decreases the grain size of SnO2. The stoichiometric analysis of Si content in the SnO2 film prepared from various Si/Sn molar ratios has also been estimated. For the sensing performance of H2S gas, the SiO2-doped Cu-Au-SnO2 sensor presents better sensitivity to H2S gas compared with Cu-Au-SnO2 sensor due to the fact that the distribution of SiO2 particles in grain boundaries of nano-crystallines SnO2 inhibited the grain growth (<6 nm) and formed a porous film. By increasing the Si/Sn molar ratio, the SiO2-doped Cu-Au-SnO2 gas sensors (Si/Sn = 0.5) exhibit a good sensitivity (S = 67), a short response time (t90% < 3 s) and a good gas concentration characteristic (α = 0.6074). Consequently, the improvement of the nano-crystalline structures and high sensitivity for sensing films can be achieved by introducing SiO2 additive into the SnO2 film prepared by LPD method.  相似文献   

19.
A very sensitive and reversible optical chemical sensor based on dithizone as chromoionophore immobilized within a plasticized carboxylated PVC film for Zn2+ determination is described. At optimum conditions (i.e. pH 5.0), the proposed sensor displays a linear response to Zn2+ over 5.0 × 10−8-5.0 × 10−6 mol L−1 range. This range was improved to 2.5 × 10−8-5.8 × 10−5 mol L−1 range by applying principle component-feed forward artificial neural network with back-propagation training algorithm (PC-ANNB). Detection limit of 8.0 × 10−9 mol L−1 was obtained. The sensor is fully reversible within the dynamic range and the response time (t95%) is approximately 4 min under batch conditions. In addition to its high stability and reproducibility, the sensor shows good selectivity towards Zn2+ ion with respect to common metal cations. The sensor was successfully applied for determination of Zn2+ ion in hair sample.  相似文献   

20.
The temperature dependence of the green upconverted emission from the two thermally coupled 2H11/2 and 4S3/2 levels of the Er3+ ion in a fluorotellurite glass has been analyzed as a function of the optically active ion concentration in order to check its availability as a temperature sensor. The infrared-to-green upconverted emission have been observed by the naked eyes after a cw laser diode excitation at 800 nm. The fluorescence intensity ratio between the thermally coupled emitting levels as well as the temperature sensitivity has been experimentally obtained up to 540 K. A better behaviour as a temperature sensor has been obtained for the less Er3+ concentrated glass with a maximum sensitivity of 54 × 10−4 K−1 at 540 K, one of the highest found in rare-earth doped transparent materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号