首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(5):1093-1106
Abstract

The partition behavior of Zn(II) has been studied in aqueous polyethylene glycol PEG(1550) – (NH4)2SO4 two‐phase system using halide ions (Cl?, Br? and I?) as extracting agents, at two different values of salt stock solution pH. The efficiency of extractants increase in this order: Cl?>Br?>I?. The extracted species were estimated from the distribution coefficients' values determined as a function of halide ions concentration, and the “conditional extraction constants” were calculated. The experimental results suggest that the Zn(II) partition in presence of halide ions in such systems is the result of two competitive processes. The IR spectra of solidified PEG‐rich phases show that the passing of metal species into PEG‐rich phases bring a supplementary water contribution, which makes the extraction process to occurs until it reaches an “equilibrium state”, dependent on the hydrophobicity of these phases and not on the type of extracted metal species.  相似文献   

2.
Intact wheat (Triticum aestivum cv. Quern) seedlings that were grown in presence or absence of NH4NO3 were exposed to solutions containing CO(NH2)2, NH4NO3, CO(NH2)2 + NH4NO3, CO(NH2)2 + KNO3 and CO(NH2)2 + (NH4)2SO4 for consecutive periods of 3, 3, 6, 12 and 24h and N uptake determined by solution depletion measurements. Differences in ethanol-soluble N and ethanol-insoluble N content of roots and shoots of control (zero time) seedlings and seedlings exposed to CO(NH2)2, NH4NO3 and CO(NH2)2 + NH4NO3 for 48 h were used to characterize N utilization during/following uptake.Regardless of initial N status, uptake of N from CO(NH2)2 was less than one-third of that from NH4NO3. Relative absorption of the CO(NH2)2 and NH4NO3 was not substantially altered by acidity control of the uptake solutions. There was a reciprocal antagonism between uptake of CO(NH2)2 and uptake of NH4NO3. Whereas CO(NH2)2 inhibited NH4 absorption in each set of seedlings, it decreased NO3 uptake only in seedlings that had been pretreated with N. Simultaneous presence of KNO3 enhanced CO(NH2)2 uptake but presence of (NH4)2SO4 decreased it to the same extent as NH4NO3. All absorption processes involving CO(NH2)2 and NH4 were substantially restricted by pretreatment of the seedlings with NH4NO3. The results suggest that apparent utilization of ambient N was dependent on initial N status of the seedlings and on the nature of the N species to which they were exposed.  相似文献   

3.
Nanosized solid superacids SO4 2−/TiO2 and S2O8 2−/TiO2, as well as MCM-41-supported SO4 2−/ZrO2, were prepared. Their structures, acidities, and catalytic activities were investigated and compared using XRD, N2 adsorption-desorption, and in situ FTIR-pyridine adsorption, as well as an evaluation reaction with pseudoionone cyclization. The results showed that SO4 2−/TiO2 and S2O8 2−/TiO2 possess not only nanosized particles with diameters < 7.0 nm, a BET surface greater than 140 cm2/g and relatively regular mesostructures with pores around 4.0 nm, but also a pure anatase phase and strong acidity. Different from the Lewis acid nature of SO4 2−/ZrO2/MCM-41, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibit mainly Bronsted acidities. The strongest Bronsted acid sites were produced on SO4 2−/TiO2 promoted with H2SO4, while Lewis acid sites on S2O8 2−/TiO2 even stronger than those on SO4 2−/ZrO2/MCM-41 were generated when persulfate solution was used as sulfating agent. Because of their distinct acid natures, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibited catalytic activities for the cyclization of pseudoionone that were much higher than that of SO4 2−/ZrO2/MCM-41. It can be concluded that the existence of more Br?nsted acid sites was favorable for proton participation in the cyclization reaction. Translated from Journal of Chemical Engineering of Chinese Universities, 2006, 20(2): 239–244 [译自: 高校化学工程学报]  相似文献   

4.
Laboratory experiments were conducted on the effects of rice straw application and N fertilization on methane (CH4) production from a flooded Louisiana, USA, rice soil incubated under anaerobic conditions. Rice straw application significantly increased CH4 production; CH4 production increased in proportion to the application rate. Urea fertilization also enhanced CH4 production. The maximum production rate was 17% higher, and occurred 1 week earlier, than that of soil samples which did not receive urea, possibly due to the increase in soil pH following urea hydrolysis. The increase in soil pH following urea hydrolysis may have stimulated CH4-generating bacteria by providing more optimal soil pH conditions or contributed to the drop in redox potential (Eh). The significant decrease in both the production rate and the total amount of CH4 by application of NH4NO3 was associated with increases in soil Eh after addition of this oxidant. Addition of 300 mg. kg–1 NO 3 - -N increased soil Eh by 220 mV and almost completely inhibited CH4 production. However, this inhibitory effect was short-termed. Soon after the applied NO 3 - -N was reduced through denitrification, CH4 production increased. When (NH4)2SO4 was applied, the inhibition of CH4 production was not associated with an increase in soil Eh which did not change significantly. A direct inhibitory effect of sulphate on methanogenesis might have been more important.  相似文献   

5.
An assessment of N loss from agricultural fields to the environment in China   总被引:48,自引:1,他引:48  
Using the 1997 IPCC Guidelines for National Greenhouse Gas Inventory Methodology, and statistical data from the China Agricultural Yearbook, we estimated that the direct N2O emission from agricultural fields in China in 1990 was 0.282 Tg N. Based on micro-meteorological field measurement of NH3 volatilization from agricultural fields in different regions and under different cropping systems, the total NH3 volatilization from agricultural fields in China in 1990 was calculated to be 1.80 Tg N, which accounted for 11% of the applied synthetic fertilizer N. Ammonia volatilization from agricultural soil was related to the cropping system and the form of N fertilizer. Ammonia volatilization from paddy fields was higher than that from uplands, and NH4HCO3 had a higher potential of NH3 volatilization than urea. N loss through leaching from uplands in north China accounted for 0.5–4.2% of the applied synthetic fertilizer N. In south China, the leaching of applied N and soil N from paddy fields ranged from 6.75 to 27.0 kg N ha-1 yr-1, while N runoff was between 2.45 and 19.0 kg N ha-1 yr-1.  相似文献   

6.
Spinel nano-Co3O4 was prepared by solid-state reaction at room temperature and investigated for selective catalytic reduction of NOx by NH3 (NH3-SCR). Although suffering from pore filling and plugging, treatment of this catalyst by SO2 showed novel promoting effect on NH3-SCR above 250 °C. Bulk cobalt sulfate was observed over the sulfated Co3O4 with XRD, which would be an active component for NH3-SCR. The sulphated Co3O4 catalyst exhibited good resistance to SO2 (500 ppm, 100 ppm) and 10% H2O at a space velocity of about 25 000 h−1 at 300 °C, as tested for 12 h.  相似文献   

7.
The reduction of lean NOx using ethanol in simulated diesel engine exhaust was carried out over Ag/Al2O3 catalysts in the presence of H2O and SO2. The Ag/Al2O3 catalysts are highly active for the reduction of lean NOx by ethanol but the reaction is accompanied by side reactions to form CH3CHO, CO along with small amounts of hydrocarbons (C3H6, C2H4, C2H2 and CH4) and nitrogen compounds such as NH3 and N2O. The presence of H2O enhances the NOx reduction while SO2 suppresses the reduction. The presence of SO2 along with H2O suppresses the formation of acetaldehyde and NH3. By infrared spectroscopy, it was revealed that the reactivity of NCO species formed in the course of the reaction was greatly enhanced in the presence of H2O. The NCO species readily reacts with NO in the presence of O2 and H2O at room temperature, being converted to N2 and CO2 (CO). Addition of SO2 suppresses the formation of NCO species and lowers the reactivity of the NCO species. However, the reduction of NOx is still kept at high conversion levels in the presence of H2O and SO2 over the present catalysts. About 80% of NOx in the simulated diesel engine exhaust was removed at 743 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Three new Schiff bases, viz., N,N′-ethylen-bis (salicylidenimine) [S1], N,N′-isopropylien-bis (salicylidenimine) [S2], and N-acetylacetone imine, N′-(2-hydroxybenzophenone imine) ortho-phenylen [S3] have been investigated as corrosion inhibitors for mild steel in 0.5 M H2SO4 using Tafel polarization and electrochemical impedance spectroscopy (EIS). The three Schiff bases function as good inhibitors reaching inhibition efficiencies of ∼97-98% at 300 ppm concentration. The fraction <theta> of the metal surface covered by the inhibitor is found to increase with inhibitor concentration. Of the three Schiff bases, the S2 shows better efficiency than the other two Schiff bases. The adsorption of the inhibitor follows Langmuir isortherm. Thermodynamic calculations indicate the adsorption to be physical in nature.  相似文献   

9.
A milling process to reduce kaolin to amorphous phase in the presence of KH2PO4 or NH4H2PO4 and allow mechanochemical (MC) reaction for incorporation of KH2PO4 and NH4H2PO4 into the kaolin structure was investigated in this work. Mixtures of kaolin and KH2PO4 and NH4H2PO4 in separate systems were prepared by milling in a planetary ball mill. Tests with kaolin contents ranging from 25 to 75 wt.% and mill rotational speeds from 200 to 700 rpm were performed to evaluate incorporation of KH2PO4 and NH4H2PO4 and release of K+, NH4+ and PO43− ions into solution. Analyses by XRD, DTA and ion chromatography indicated that the MC process was successfully applied to incorporate both KH2PO4 and NH4H2PO4 into the amorphous kaolin structure. Release of K+ and PO43− ions from the system (kaolin-KH2PO4) when dispersed in water for 24 h reached only up to 10%. Under similar conditions for the system (kaolin-NH4H2PO4), release of NH4+ and PO43− ions reached between 25 and 40%. These results indicated that the MC process can be developed to allow amorphous kaolin to act as a carrier of K+, NH4+ and PO43− nutrients to be released slowly for use as fertilizer.  相似文献   

10.
Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) and Delta Electricity have developed, commissioned and operated an A$7 million aqueous NH3 based post-combustion capture (PCC) pilot plant at the Munmorah black coal fired power station in Australia. The results from the pilot plant trials will be used to address the gap in know-how on application of aqueous NH3 for post-combustion capture of CO2 and other pollutants in the flue gas and explore the potential of the NH3 process for application in the Australia power sector. This paper is one of a series of publications to report and discuss the experimental results obtained from the pilot plant trials and primarily focuses on the absorption section.The pilot plant trials have confirmed the technical feasibility of the NH3 based capture process. CO2 removal efficiency of more than 85% can be achieved even with low NH3 content of up to 6 wt%. The NH3 process is effective for SO2 but not for NO in the flue gas. More than 95% of SO2 in the flue gas is removed in the pre-treatment column using NH3. The mass transfer coefficients for CO2 in the absorber as functions of CO2 loading and NH3 concentration have been obtained based on pilot plant data.  相似文献   

11.
The solid acid catalysts SO42?/ZrO2 were prepared by impregnation technique at different calcination temperatures. The surface characterizations were carried out by using scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), temperature programed desorption of NH3 (NH3-TPD), and N2-BET. The SEM results showed that the size of the SO42?/ZrO2 was not uniform and varied from about 1 to 20?µm. The characteristic peaks in FTIR spectra were essentially the same within the calcination temperature range of 400–700?°C. The XRD results indicated that the transition temperature from amorphous to tetragonal phase was up to 500?°C. The strong acid and superacid sites of the samples could be observed by the NH3-TPD results. The largest BET surface area was 140 m2/g, when the calcination temperature was at 500?°C, and all the pore size distributions belong to mesoporous range. The solid acid SO42?/ZrO2 was used for the epoxidation of castor oil. When the calcination temperature of SO42?/ZrO2 was 600?°C, reaction temperature 45?°C, and reaction time 8?h, the reaction effect was better with an iodine value of 33.0?±?1.6?g/100?g and an epoxy value of 2.45?±?0.11?mol/100?g.  相似文献   

12.
One technological process employing ozone and heterogeneous catalyst-sorbents was proposed for removal of SO2 from flue gas. The catalyst-sorbents were developed and tested especially for adsorption and oxidation of SO2. Alternative catalyst-supporters including γ-Al2O3, permutite, silica gel, activated carbon and diatomite combined with different metal oxides (MnO2, Cr2O3, Fe2O3, CuO, CoO and NiO) were evaluated and tested. It was found that γ-Al2O3 doped with MnO2 can be considered as removal-effective sorbent for adsorption and oxidation of SO2. The synergetic effect between ozone and catalyst was found to be dominated. Effects of catalyst preparation parameters like calcination temperature, metal loaded and reaction temperature, etc. were investigated based on the MnO2/Al2O3 catalyst-sorbents. Results show that γ-Al2O3 combined with 8% Mn, calcinated under 573 K and reacted at 413 K are the optimal parameters for removal of SO2. Extra NO in flue gas can slightly enhance the capture efficiency of SO2.  相似文献   

13.
Bench scale fuel cell tests have been carried out on the SO2 oxidation catalyst systems V2O5/M2S2O7 (M = alkali) used as electrolytes in a standard molten carbonate fuel cell (MCFC) fuel cell setup for removal of SO2 from power plant flue gases. Porous Li x Ni(1–x)O electrodes were used both as anode and cathode. The cleaning cell removes SO2 when a potential is applied across the membrane, potentially providing cheap and ecological viable means for regeneration of SO2 from off-gases into high quality H2SO4. Results show that successful removal of up to 80% SO2 at 450 °C can be achieved at approximately 5 mAcm–2. However, the data obtained during the experiments explain the current limitations of the process, especially in terms of electrolyte wetting capability and acid/base chemistry of the electrolyte.  相似文献   

14.
《分离科学与技术》2012,47(13):2085-2089
The absorption of NO in aqueous solutions of KMnO4 and H2SO4 was carried out in a stirred tank reactor under atmosphere pressure. The results indicated that the absorption process was under a fast pseudo-m th reaction regime. The reaction between NO and aqueous solutions of KMnO4/H2SO4 was found to be first-order with respect both to NO and to KMnO4. The addition of H2SO4 to KMnO4 solutions increased the absorption rate of NO and increasing reaction temperature was also favorable to the absorption of NO.  相似文献   

15.
Highly active and heat‐resisting W/HZSM‐5‐based catalysts for nonoxidative dehydro‐aromatization of methane (DHAM) have been developed and studied. It was found from the experiments that the W−H2SO4/HZSM−5 catalyst prepared from a H2SO4‐acidified solution of ammonium tungstate (with a pH value at 2–3) displayed rather high DHAM activity at 973–1023 K, whereas the W/HZSM‐5 catalyst prepared from an alkaline or neutral solution of (NH4)2WO4 showed very little DHAM activity at the same temperatures. Laser Raman spectra provided evidence for existence of (WO6)n- groups constructing polytungstate ions in the acidified solution of ammonium tungstate. The H2‐TPR results showed that the reduction of precursor of the 3% W–H2SO4/HZSM‐5 catalyst may occur at temperatures below 900 K, producing W species with mixed valence states, W5+ and W4+, whereas the reduction of the 3% W/HZSM‐5 occurred mainly at temperatures above 1023 K, producing only one type of dominant W species, W5+. The results seem to imply that the observed high DHAM activity on the W–H2SO4/HZSM‐5 catalyst was closely correlated with (WO6)n- groups with octahedral coordination as the precursor of catalytically active species. Incorporation of Zn (or La) into the W–H2SO4/HZSM‐5 catalyst has been found to pronouncedly improve the activity and stability of the catalyst for DHAM reaction. Over a 2.5% W–1.5% Zn–H2SO4/HZSM‐5 catalyst and under reaction conditions of 1123 K, 0.1 MPa, and GHSV=1500 ml/(h g−cat.), methane conversion (XCH4) reached 23% with the selectivity to benzene at ∼96% and an amount of coke for 3 h of operation at 0.02% of the catalyst weight used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The molten salts M2S2O7 and MHSO4, the binary molten salt systems M2S2O7—MHSO4 and the molten salt-gas systems M2S2O7—V2O5 and M2S2O7—M2SO4—V2O5 (M = Na, K, Rb, Cs) in O2, SO2 and Ar atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and Differential Scanning Calorimetry (DSC). Fundamental thermodynamic data like temperatures and molar heats of solid--solid transition and fusion, phase diagrams, heat capacities of solids and liquids, heat of mixing and heats of complex formation have been obtained and the results are discussed in relation to the mechanism of SO2 oxidation by V2O5 based industrial catalysts.  相似文献   

17.
PMMA-Na2SO4 composite films were prepared by a solvent casting method and were characterized by SEM, EDX, DSC, UTM, TG/DTA and FTIR techniques. From the SEM it is clear that Na2SO4 were well dispersed, having sizes ranging from micrometer to nanometer. EDX results confirm the presence of Na2SO4 particles in a polymer matrix. UTM studies show that the tensile strength of PMMA-Na2SO4 composite is better than pure PMMA. FTIR spectra indicates the strong interaction between C=O of PMMA and Na2SO4. According to DSC, TG/DTA analysis the thermal stability and glass transition temperature of PMMA-Na2SO4 has increased as compared with that of pure PMMA.  相似文献   

18.
《Fuel》2003,82(2):147-151
The aim of this paper is to show how a cheap carbonaceous material such as low rank coal-based carbon (or char) can be used in the combined SO2/NO removal from exhaust gas at the linear gas velocity used in commercial systems (0.12 m s−1). Char is produced from carbonization and optionally activated with steam. This char is used in a first step to abate the SO2 concentration at the following conditions: 100 °C, space velocity of 3600 h−1, 6% O2, 10% H2O, 1000 ppmv SO2, 1000 ppmv NO and N2 as remainder. In a second step, when the SO2 concentration in the flue gas is low, NO is reduced to N2 and steam at the following experimental conditions: 150 °C, space velocity of 900 h−1, 6% O2, 10% H2O, 0-500 ppmv SO2, 1000 ppmv NO, 1000 ppmv NH3 and N2 as remainder.It has been shown that the presence of NO has no effect on SO2 abatement during the first step of combined SO2/NO removal system and that low SO2 inlet concentration has a negligible effect on NO reduction in the second step. Moreover, this char can be thermally regenerated after use for various cycles without loss of activity. On the other hand, this regenerated char shows the highest NO removal activity (compared to parent chars, either carbonized or steam activated) which can be attributed to the activating effect of the sulfuric acid formed during the first step of the combined SO2/NO removal system.  相似文献   

19.
Supporting CuO on a Al2O3-coated cordierite honeycomb yields a good catalyst (CuO/HC–Al) for selective catalytic reduction (SCR) of NO with NH3 at 350–500 °C. SO2 has complex effects on the catalysts activity. It significantly promotes the SCR activity through conversion of CuO to CuSO4, however, when a certain amount of CuO is converted, it slightly decreases the SCR activity through competitive adsorption with NH3. This competitive adsorption reduces the amount of NH3 adsorbed on the catalyst surface, especially on the sites highly active to the SCR. It also prevents transformation of CuO to CuSO4 and as a result, the catalysts subjected to pre-sulfation and in situ sulfation show different SCR behaviors.  相似文献   

20.
Cobalt and copper were electrodeposited on n-type, 100-oriented, pyrite slices. The occurrence of a favorable chemical interaction with the pyrite interface is marked by the appearance of pronounced prebulk deposition (PBD) features in the case of Co. This metal leads to the formation of highly ohmic metallic contact, while deposition of Cu provides a significant Schottky barrier. The effects of electrodeposited Co and Cu can be explained by the formation of the pyrite-type compounds CoS2 and CuS2, at the interface, which are n- and p-type metallic compounds, respectively. When time for diffusion is allowed, mixed CoxFe1−xS2 and CuxFe1−xS2 phases are also to be expected as learned from XPS experiments on (electron beam evaporated) Co/(MOCVD) pyrite layers. A model is proposed which links the electronic properties of these disulfides with their solid state chemical behavior in the pyrite structure and with their ability to form PBD layers (Co).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号