首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对矿用充填胶凝材料不同配比的激发剂化学复合作用所引起充填胶结体单轴抗压强度复杂非线性变化问题,提出一种充填胶凝材料激发剂配比智能优化决策方法.首先,开展均匀设计试验获取不同激发剂配比充填胶结体抗压强度数值;其次,采用动态自适应交换变异概率及适应度竞争交换方式的改进遗传树表征激发剂与充填胶结体抗压强度之间的非线性复杂关系,运算至49代时即满足终止法则,收敛速度较快,函数精度高;最后,确定约束条件,建立激发剂配比优化模型,采用遗传算法的全局快速寻优技术,获得满足充填体强度要求的激发剂优化配比.结果表明:采用该智能优化方法研究铁矿新型充填胶凝材料激发剂配比,优化结果显示,满足该矿山充填体强度的胶凝材料优化配比为生石灰2.91%、石膏17.39%、矿渣粉79.7%;在该优化配比周围开展验证试验,试验结果显示为生石灰3%、石膏17%、矿渣粉80%时、充填体7、28d抗压强度均达到最大,与激发剂配比智能优化方法获得的胶凝材料配比相吻合.相比42.5水泥,用该智能优化方法获得的激发剂配比制备全尾砂充填胶凝材料,可降低材料成本22%.  相似文献   

2.
以灰砂比0.03、0.05和0.08,粉砂比0、0.05、0.1、0.15和0.2为设计参数,对建筑垃圾回填材料进行设计。通过试验对回填材料的流动性(流动度、泌水率)、无侧限抗压强度以及应力应变曲线、本构关系模型和弹性模量等进行研究。研究结果表明:回填材料的流动度受水固比影响较大,两者接近线性关系;流动度在200~250 mm范围,泌水率在4%~8%之间;回填材料抗压强度与灰砂比和水固比之间存在很好的幂指数关系;回填材料应力应变曲线形状与普通混凝土的相似,在此基础上提出回填材料的本构关系模型;回填材料无侧限抗压强度与弹性模量之间存在很好的指数关系。  相似文献   

3.
Backfilling is a common practice in the mining industry and the backfilling performance plays a significant role in supporting the surrounding rock mass. To evaluate the backfilling performance, an experimental apparatus has been developed to understand how backfill affects the compressive strength of sandstone specimens in the laboratory. Pebbles were selected to model the backfill and divided into six groups with different particle sizes using a set of standard sieves. The backfilling pebbles with three types of particle size compositions were then produced, i.e. single gradation, two adjacent gradations, and increasingly widening gradations. A series of compressive tests were carried out to study the mechanical behavior of the sandstone specimens confined by these pebbles. The effects of the gradations of the filled pebbles on the peak and residual compressive strengths were analyzed. It is found that the increasing amount of the compressive strength is over 10% in most cases, even up to 20%. Based on the experiment data, the increasing amount was also estimated theoretically under some assumptions and it further confirmed the experimental results. The effects are closely related to the gradations of the filled pebbles except for their dense degree.  相似文献   

4.
针对高水材料强度相对偏低、成本相对较高的问题,选取粉煤灰和硅粉两种添加剂,对高水材料进行改性研究,添加剂掺量梯度为5%、10%、15%和20%,采用了四川大学电子万能试验机和扫描电镜(SEM)两种试验设备,进行了添加剂对高水材料力学性质影响试验,探究了添加剂对高水材料微观结构及力学性能的影响。试验结果表明,掺20%粉煤灰和掺10%硅粉均可使高水材料的抗压强度提高到0.36MPa,与未掺添加剂高水材料相比,强度提高了20%,且能有效提高残余强度;添加剂的掺入改变了高水材料钙钒石晶体的发育形貌、直径大小以及空间网状结构的致密程度;证明了抗压强度的大小是由晶体形貌、直径大小、晶体结构的搭接方式以及网状结构的致密性共同影响的。  相似文献   

5.
To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area, the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM) under the high stressstrength ratio. The creep damage was monitored using an electrical resistivity device, ultrasonic testing device, and acoustic emission(AE) instrument. The results showed that the CGBM sample has a creep hardening property. The creep failure strength(CFS) is slightly larger than the uniaxial compressive strength(UCS), ranging in ratio from 108.9% to 116.5%. The instantaneous strain, creep strain, and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests. The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process. The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model. Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process. The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity, ultrasonic pulse velocity(UPV), and AE signals.  相似文献   

6.
This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.  相似文献   

7.
当前工程应用的预填集料混凝土其集料粒径大且组成单一,混凝土强度偏低,应用范围受限.为提高预填集料混凝土抗压强度,本文试验研究制备方式、浆体材料类型、粗集料级配组成等对预填集料混凝土抗压强度的影响.结果表明:分层填筑、振动灌浆比自填充灌浆更有利于提高预填集料混凝土抗压强度;粗集料堆积程度越紧密、空隙率越小,预填集料混凝土...  相似文献   

8.
为提高多孔地质聚合物的力学强度和隔热性能,分别以双氧水(H2O2)和十二烷基硫酸钠(SDS)为发泡剂和稳泡剂,采用化学发泡法制备了由钛酸钾晶须改性的偏高岭土基多孔地质聚合物材料,对其进行了微观结构表征及性能测试。结果表明,当发泡剂和稳泡剂质量分数分别为2.0%和1.5%时,孔结构分布均匀,总孔隙率最高可达51.6%,平均孔径为0.87 mm,其抗压强度为3.63 MPa;随着钛酸钾晶须质量分数从0.0%增至10.0%时,其最高抗压强度可达4.11 MPa。在钛酸钾晶须质量分数为20%时,其最低导热系数可达0.048 W/(m?K),相比于空白样,抗压强度提高了13.22%,导热系数降低了80.80%。钛酸钾晶须的引入可以明显提高多孔地质聚合物的抗压强度和隔热性能。  相似文献   

9.
The main factors deciding the compressive strength of binder backfill body are tailing density and binder dosage in binder backfill materials. Based on the antecedent of certain pulp density, the method of increasing the tailing density and reducing the binder dosage, or the manner of cutting down the tailing density and gaining the binder dosage are taken to guarantee the strength of backfill body.The problem that should be solved is how to determine the tailing density and the binder dosage rationally. This paper tries to realize the correct selection of the tailing density and the binder dosage in computer with the method of fuzzy mathematics.  相似文献   

10.
针对SBS改性沥青厂拌热再生混合料,通过测量不同RAP用量及旧料加热温度下的抗压强度、劈裂强度,对再生混合料的力学性能变化规律进行了分析.试验结果表明:RAP含量在20%以内时,再生混合料性能与新料性能并无明显差别;随着RAP比例增加,再生混合料强度逐渐提高.当温度条件满足要求时,可以适当提高RAP用量.  相似文献   

11.
基于可靠度理论的下向进路充填体强度确定方法   总被引:4,自引:0,他引:4  
充填体强度确定是制约胶结充填采矿技术发展的三大充填体力学问题之一.阐述了采用传统方法确定充填体强度的不足,结合下向进路力学分析结果,提出了基于可靠度理论的下向进路充填体强度确定方法和随机参数敏感性分析方法.并结合某矿山现场实际,探讨了下向进路承栽层稳定性可靠概率的合理取值,认为承载层稳定性可靠概率为90%时可以满足现场生产的需要.分别采用蒙特卡洛法、改进的JC法和JC法计算了该矿山废石料充填进路承栽层所需的强度值,分析了各随机参数对承栽层稳定性可靠概率影响的敏感性,探讨了承载层稳定性可靠指标与安全系数之间的关系.所提出的方法对阶段充填采矿法充填体强度确定也具有良好的适用性.  相似文献   

12.
The effect of the ground granulated blast-furnace slag ( GGBFS ) addition, the modulus n ( mole rutio of SiO2 to Na2O ) and the concentrution of sodium silicate solution on the compressive strength of the material, i e alkuli-activated carbonatite cemeutitious material ( AACCM for short ) was investiguted. In addition, it is found that barium chloride has a sutisfiwtory retarding effect on the setting of AACCM in which more than 20% ( by mass ) ground carbonatite was replaced by GGBFS. As a result, a cementitious material, in which ground carbonatite rock served as dominative starting material, with 3-day and 28-day compressive strength greuter them 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained.  相似文献   

13.
The stability of cemented paste backfill(CPB) is threatened by dynamic disturbance, but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose. Therefore, a split Hopkinson pressure bar(SHPB) was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4, 0.8, and 1.2 MPa. And the failure modes were determined by macro and micro analysis. CPB with different cement-to-tailings ratios, solid mass concentrations, and curing ages was prepared to conduct the SHPB test. The results showed that increasing the cement content, tailings content, and curing age can improve the dynamic compressive strength and elastic modulus. Under an impact load, a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading. And the dynamic compressive strength of CPB has an exponential correlation with the strain rate. The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading. The local damage was enhanced, and fine cracks were formed in the interior of the CPB. This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.  相似文献   

14.
充填料浆凝固后形成的充填体中含有大量的孔隙,孔隙对充填体力学性能的影响尚不明确。为探究充填体内孔隙结构与充填体单轴抗压强度(Uniaxial compressive strength, UCS)的关联机制,利用十二烷基硫酸钠(Sodium dodecyl sulfate, SDS)调节充填体内的孔隙含量,采用低场核磁共振技术(Nuclear Magnetic Resonance, NMR)测试充填体内部孔隙的横向弛豫时间,利用压力机测试充填体的UCS,利用扫描电镜(Scanning electron microscope, SEM)获取充填体破坏面孔隙结构的微观图像,对孔隙的孔径分布进行了分析,对孔径的分形特征进行了研究,结果表明:充填体内孔隙总量随着养护龄期的增加逐渐降低,且SDS掺量越高,样品在14d与28d时的孔隙总量越接近;多害孔隙的占比随着养护龄期的增加明显降低,且与样品的UCS呈负相关,无害孔隙、低害孔隙、有害孔隙的占比在各龄期间变化较小;SDS掺量为所用水泥质量的2‰时对样品的UCS最有益;孔径在5nm-130nm区间的孔隙数量具有较为明显的分形特征,而孔径不在该区间的孔隙数量不具有分形特征;水泥水化反应产物呈簇状,簇状产物因生长、发育、延伸而挤占了孔隙空间是孔隙总量、多害孔隙数量随养护龄期增加不断降低的微观原因。研究结果可以为更全面的理解充填体强度提供理论支撑。  相似文献   

15.
研制了以粉煤灰-石灰-硫酸盐系统为胶凝材料,掺入一定的骨料,经压制成型生产粉煤灰无熟料砖,标准养护条件下28天抗压强度在20MPa以上,并对影响强度的主要因素进行了分析。  相似文献   

16.
C40特细砂混凝土和易性和抗压强度研究   总被引:3,自引:0,他引:3  
利用邯郸当地的原材料制备C40特细砂混凝土,采用正交设计方法,试验研究了水胶比、粉煤灰取代率、砂率对特细砂混凝土28d抗压强度及和易性的影响。结果表明,粉煤灰取代率是影响混凝土28d抗压强度的最主要因素,砂率是影响混凝土和易性的最主要因素;适当的粉煤灰取代率能提高混凝土28d抗压强度;随着砂率的增加,塌落度大幅下降而强度略有降低;水胶比为0.45,粉煤灰取代率为10%,砂率为30%,通过添加1.2%的高效减水剂可配制出28d强度达59.1MPa、塌落度为60ram的混凝土。  相似文献   

17.
This paper aimed to improve the water-retention performance and basic physical properties of sulfoaluminate cement(SAC)-based planting cementitious material. The effect of natural zeolite on the performance of SAC-based planting material was investigated. The water-retention performance, porosity, compressive strength, and alkalinity had been tested and TG-DSC analysis had been adopted in this paper. Experimental results showed that zeolite was effective to improve the water-retention capacity and 10%, 20% and 30% natural zeolite increased the pore volume of the hardened pastes by 10.6%, 26.0%, and 38.6%, especially pore size below 0.1 μm was increased by 9.7%, 26.2% and 17.5%. And 10% zeolite was beneficial to the compressive strengths of cementitious material and 1, 3, and 28 d compressive strength reached up to 35.9, 55.0, 80.3 MPa. Furthermore zeolite decreased the alkalinity of pore fluid of hardened cementitious material, while the addition of zeolite reached up to 30%, the alkalinity of pore fluid of hardened cementitious material decreased by 8.9%. Therefore zeolite was suitable for improving the performance of SAC-based planting cementitious material.  相似文献   

18.
The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5%,10% and 20% metakaolin were prepared at a water/cementitious material ratio (W/C) of 0.30.In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison.The specimens were cured in water at 27℃ for 3 to 90 days .The results show that at the early age of curing(3 days and 7 days),metakaolin re-placements increase the compressine strength ,but silica fume replacement slightly reduces the compressine strength.At the age of and after 28 days ,the compressive strength of the concrete with metakaolin and silica fume replace-ment increases.A strong reduction in the total porosity and average pore diameter were observed in the conctete with MK 20% and 10% in the first 7 days.  相似文献   

19.
在普通干混砂浆中掺加木质素纤维,且用膨胀珍珠岩颗粒等量代替普通细集料砂,获得自保温干混砂浆样品,研究其物理力学性能、热学性能及收缩性能等。结果表明:加入占胶凝材料质量0.3%的木质素纤维,能显著改善自保温砂浆硬化后的力学性能,尤其是抗折强度;用膨胀珍珠岩替代砂,膨胀珍珠岩的体积分数小于15%时,能提高含纤维硬化样品的28 d抗压强度,大于15%时,样品的28 d抗压强度会降低,为15%时,砂浆试样硬化后的28 d抗压强度为38 MPa,抗折强度为6.1 MPa;另外,当样品中膨胀珍珠岩体积分数为20%,含胶凝材料质量0.3%的木质素纤维,其硬化后的导热系数仅为基准砂浆样品的1/3。  相似文献   

20.
胶凝砂砾石材料是一新型筑坝材料,拥有广阔的发展前景。用水量是影响胶凝砂砾石强度的重要因素。通过抗压强度试验分析用水量对胶凝砂砾石抗压强度的影响,得出:最优用水量随胶凝材料掺量的增大而增大,随砂率的增大而增大,最优用水量为85~125 kg/m~3;最优水胶比随胶凝材料用量的增加而减小,随龄期的增加呈减小的趋势,最优水胶比为0.95~1.35。用水量对抗压强度的影响仅次于水泥用量,在施工过程中,应将其作为胶凝砂砾石材料的一项重要参数来控制,以保证胶凝砂砾石材料的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号