首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase noise is an important index in evaluating the performance of millimeter wave (MMW) frequency source. Because of the high frequency, it is difficult to measure its phase noise directly. So it is very necessary to find new methods for estimating it effectively and easily. In this paper, the main factors affecting phase noise of MMW PLL frequency source are analyzed, and then a new method to estimate the phase noise is presented, which is based on the comparison of the phase noise of microwave phase-locked frequency source with phase-locked intermediate frequency in MMW phase-locked loop. In order to demonstrate the validity of this method of phase noise estimate, it is applied to estimate the phase noise of 95GHz double PLL frequency synthesizer. The result shows that the theoretical estimate value is well coincident with the experimental value.  相似文献   

2.
Zhao Yan  Wang Zhigong  Li Wei  Zhang Li 《半导体学报》2009,30(1):015003-015003-4
A 53 GHz Colpitts oscillator implemented in a SiGe:C BiCMOS technology is presented. Limited by a 26.5 GHz frequency analyzer, the oscillator was measured indirectly through an on-chip mixer. The mixer down-converted the oscillating frequency to an intermediate frequency (IF) below 26.5 GHz. By adjusting the local os-cillating (LO) frequency and recording the changes of IF frequency, the oscillator's output frequency (RF) was determined. Additionally, using phase noise theory of mixers, the oscillator's phase noise was estimated as-58 dBc/Hz at 1 MHz offset and the output power was about-21 dBm. The chip is 270×480 μm in size.  相似文献   

3.
A broadband microwave/millimeter-wave (MMW) Gilbert-cellmixer using standard 1P8M 0.13-/spl mu/m complementary metal oxide semiconductor (CMOS) technology is presented in this letter. Two radio frequency (RF) transformer baluns are used in RF-and local oscillator (LO)-ports to convert single-ended signals to differential signals. Thin film microstrip line is employed for the matching networks and transformer design. This mixer has a conversion gain of better than 5dB from 9 to 50GHz. Between 5 and 50GHz,the RF- and LO-to-intermediate frequency (IF) isolations are better than 40dB. The RF-to-LO and LO-to-RF isolations are all better than 20dB. To the authors' knowledge, this is the first CMOS Gilbert-cell mixer operating to MMW frequency to date.  相似文献   

4.
Noise in RF-CMOS mixers: a simple physical model   总被引:10,自引:0,他引:10  
Flicker noise in the mixer of a zero- or low-intermediate frequency (IF) wireless receiver can compromise overall receiver sensitivity. A qualitative physical model has been developed to explain the mechanisms responsible for flicker noise in mixers. The model simply explains how frequency translations take place within a mixer. Although developed to explain flicker noise, the model predicts white noise as well. Simple equations are derived to estimate the flicker and white noise at the output of a switching active mixer. Measurements and simulations validate the accuracy of the predictions, and the dependence of mixer noise on local oscillator (LO) amplitude and other circuit parameters  相似文献   

5.
The drawback of conventional Pon retrodirective antenna systems is the requirement of a local oscillator (LO) working at approximately twice the receive frequency. This limits the use of these systems to rather moderate frequencies where such an oscillator can be obtained. To overcome this problem, a new phase conjugate mixer topology is proposed, whereby the use of a harmonic mixer instead of the conventional fundamental type effectively halves the LO frequency requirement. Another significant problem of conventional Pon phase conjugate mixers is the small spacing in frequency, typically only a few 0.1% of the carrier frequency, between RF, IF, and LO frequency. In this paper, we have overcome this problem by introducing a double balanced structure with a novel phasing strategy. The phasing circuit automatically cancels the RF and LO signal at the system's output port, giving 36-dB RF/IF, and 34-dB LO/IF isolation for a 970-MHz IF and 990-MHz RF signal. The new mixer structure proposed here is an attractive proposition for use in retrodirective antenna arrays significantly enhancing their potential for application in the millimeter-wave frequency range  相似文献   

6.
雷达本振源的宽带合成与高精度控制   总被引:1,自引:1,他引:0  
提出了一种L波段宽带高精度自适应雷达本振频率合成和控制技术,这种技术通过对中频进行精确测频,控制由DDS+PLL_混频构成的宽带频率合成器的本振输出频率,实现对射频信号的搜索、跟踪,从而保证接收的中频为精确的固定中频。它搜索跟踪速度快、范围大、分辨率高、精度高、稳定可靠,同时满足了本振信号大带宽、低相噪、高纯频谱和自适应的要求。  相似文献   

7.
A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm^2, including bias circuits and buffers.  相似文献   

8.
Phase-locked loops (PLL's) may be used to implement signal combiners which coherently sum multiple signals from an array of sensors. In each combiner channel, the sensor signal is simultaneously downconverted to an intermediate frequency (IF) signal and phase-locked to an appropriately generated reference signal by a "long-loop" PLL. This loop maintains a nominal 90° phase difference between the IF signal and the reference signal irrespective of phase of the channel input (sensor output) signal. The channel IF signals are summed to generate the combiner output signal. The reference signal may be a locally generated sine wave or a delayed version of the combiner output signal. Imperfect phase control and, thus, imperfect signal combining results when noise voltages are associated with the channel signals. In this paper, a lincarized model of a PLL coherent combiner is developed. This model applies when the desired channel signals are equal amplitude and angle modulated; the channel noise voltages are equal level, Gaussian distributed, and independent; and the combiner phase errors are appropriately small. This model is then used to derive equations for the variance of differential phase errors associated with combiner operation and to show the effect of these phase errors on the average power in the combiner output signal. Relevant experimental results from a four-channel combiner are compared with the performance predicted by the linear model.  相似文献   

9.
The authors present a novel scheme of up-converting optical intermediate frequency (IF) signals with an optical local oscillator (LO) signal using cross-gain modulation in a semiconductor optical amplifier. This scheme provides high conversion efficiency and is independent of the incident light wavelength and polarization. It can be useful for radio-on-fiber transmission system applications in which one remote LO signal is provided for several wavelength-division-multiplexing IF signals.  相似文献   

10.
Measurements on a 6-GHz single-sideband (SSB) balun-coupled mixer revealed a feedthrough of RF signals between the two mixer sections that caused the IF outputs to be unbalanced at the +-90° local oscillator (LO) phase differences when using a ring diode quad. Using a bridge diode quart in this same mixer eliminated this IF output unbalance. These measurements also give conclusive evidence that the balun-coupled mixer has a short-circuited image frequency voltage with the ring diode quad and an open-circuited image frequency voltage with the bridge diode quad. These two image frequency impedance conditions are independent of circuit terminating impedances and solely depend on the image frequency current path being completed or interrupted by the ring or bridge diode quads, respectively.  相似文献   

11.
Locking phenomena as well as the phase following behaviour of a type of phase-locked oscillator (PLO) called frequency feedback phase-locked oscillator (FFPLO) have been studied in detail. Expressions for the locking range and the signal handling capacity when it is tracking an TTM signal have been derived. Stability of the system has been discussed with the help of a dual Nyquist plot. Experimental performance of the system with regard to the reception of a single tone FM signal is quite satisfactory and has been found to be in agreement with the theoretical predictions.  相似文献   

12.
This paper describes the design and behavior of a 12-GHz push-push dielectric resonator oscillator in a phase-locked environment. This phase-locked dielectric resonator oscillator (PLDRO) differs from conventional designs on many fronts. First, it uses a push-push oscillator for its improved phase noise and reduced fundamental frequency. Second, the phase detection is implemented at a 3-GHz IF as an alternative to detecting at RF using a sampling phase detector (PD). Finally, the push-push PLDRO is tuned via coupled microstrip lines to minimize oscillator loading. These modifications are intended to minimize the risk of PLDRO lock failures by maintaining a constant PD gain via amplifiers operating at P/sub 1dB/, and by halving the DRO fundamental frequency using the push-push approach. Experimental results indicate a fundamental suppression of 27 dBc, and single-sideband phase noise densities of -105, -110, and -125 dBc/Hz at 10-kHz, 100-kHz, and 1-MHz offsets, respectively, from a 12-GHz carrier.  相似文献   

13.
A wideband frequency synthesizer is designed and fabricated in a 0.18 μm CMOS technology. It is developed for DRM/DRM+/DAB systems and is based on a programmable integer-N phase-locked loop. Instead of using several synthesizers for different bands, only one synthesizer is used, which has three separated divider paths to provide quadrature 8-phase LO signals. A wideband VCO covers a frequency band from 2.0 to 2.9 GHz, generates LO signals from 32 to 72 MHz, and from 250 to 362 MHz. In cooperation with a programmable XTAL multi-divider at the PLL input and output dividers at the PLL output, the frequency step can be altered from 1 to 25 kHz. It provides an average output phase noise of ?80 dBc/Hz at 10 kHz offset, ?95 dBc/Hz at 100 kHz offset, and ?120 dBc/Hz at 1 MHz offset for all the supported channels. The output power of the LO signals is tunable from 0 dBm to +3 dBm, and the phase of quadrature signals can also be adjusted through a varactor in the output buffer. The power consumption of the frequency synthesizer is 45 mW from a 1.8 V supply.  相似文献   

14.
微波本振源噪声分析   总被引:2,自引:1,他引:1  
刘宾容 《电讯技术》2003,43(6):64-67
微波本振源在微波转发设备中是一个关键部件,在现代转发设备中采用大规模单片锁相式频率合成作为本振源,其输出谱线相位噪声直接影响到微波转发设备的输出谱线质量。文中对微波本振源相位噪声进行了描述及对它的几种相位噪声特点进行了分析,并得出微波本振源环路总相位噪声功率谱密度表达式以及锁相环的环路带宽选择原则。  相似文献   

15.
Signals arrive out of phase at the intended receiver from collaborative beamforming (CB) nodes due to the instability in the output frequency signals of the universal software radio peripheral's (USRP) local oscillator (LO). These nodes including the target must synchronize their oscillator frequencies for coherent signal reception. In order to do this, frequencies and phases of the signals should be estimated in software defined radio (SDR) and smoothen with nonlinear filters such as the extended Kalman filter (EKF). The process noise parameters of the NI USRP-2920 nodes will have to be calculated and used with the EKF process noise covariance matrix. These nodes are green communication hardware devices where most of the hardware units are now software defined. This article uses the direct spectrum method to obtain the phase noise values at various frequency offsets of the NI USRP-2920 in order to calculate the power spectral density of fractional frequency fluctuation. By applying the power-law noise model to this obtained value, the generated white frequency noise and random walk frequency noise values are q1=1.9310-21 and q2=5.8610-18, respectively.  相似文献   

16.
Sub-harmonic modulator and demodulator are presented in this paper using 0.13-mum standard CMOS technology for millimeter-wave (MMW) wireless gigabit direct-conversion systems. To overcome the main problem of local oscillator (LO) leakage in direct-conversion systems, the sub-harmonically pumped scheme is selected in this mixer design. An embedded four-way quadrature divider is utilized in the sub-harmonic Gilbert-cell design to generate quadrature-phases LO signals at MMW frequency. For broadband applications, a broadband matching design formula is provided in this paper to extend the operational frequency range from 35 to 65 GHz. To improve the flatness of conversion loss at high frequency, high-impedance compensation lines are incorporated between the transconductance stage and LO switching quad of the Gilbert-cell mixer to compensate the parasitic capacitance. The sub-harmonic modulator and demodulator exhibit 6 plusmn1.5 dB and 7.5 plusmn1.5 dB measured conversion loss, respectively, from 35 to 65 GHz. For MMW wireless gigabit applications, the gigabit modulation signal test is successfully performed through the direct-conversion system in this paper. To our knowledge, this is the first demonstration of the MMW CMOS sub-harmonic modulator and demodulator that feature broadband and gigabit applications.  相似文献   

17.
Rotholz  E. 《Electronics letters》1984,20(19):786-787
A formula is derived for the output phase noise of a mixer when both the radio frequency RF and local oscillator LO carriers are impaired by phase noise. The calculation uses test results obtained with three discrete carriers. An application of the noise formula to frequency synthesis is included.  相似文献   

18.
For low-power and accurate quadrature local oscillator (LO) signal generation, an LC-tank voltage controlled oscillator (VCO) operating at double the required LO-frequency reuses the bias current of divide-by-two frequency divider. The current reusing VCO and divide-by-two frequency divider are targeted to generate the LO signals for a 1.57 GHz global positioning system receiver. Implemented in a 0.18 mum CMOS technology, the current reusing VCO and divide-by-two frequency divider consumes 1.7mA from a 1.8 V supply. The measured phase noise is -120dBc/Hz at 1 MHz offset when the carrier frequency is 1.57GHz.  相似文献   

19.
A quasi-linear two-port approach between RF and IF ports to design a simultaneous conjugate-matched mixer is presented in this paper. Conventionally, mixer design is treated as a nonlinear three-port device problem. Nonetheless, with the exception of the large-signal local oscillator (LO) that exists at the LO port, the input RF and output IF signals that exist at the RF and IF ports, respectively, are small signals. Consequently, mixers can be approximated as bilateral quasi-linear two-port circuits with a time-variant transfer function between the RF and IF ports, in which the LO port of the mixer is treated as part of the two-port network. With this approximation, it can be shown mathematically that the optimum source and load matching networks required for attaining simultaneous conjugate match at the RF and IF ports are actually time invariant, thus implying that it is possible to synthesize these optimum impedance values. This proposed mixer design technique, together with the equations derived, are verified with block-diagram simulation and experimental measurements of two 2.4-GHz RF/420-MHz IF double-balanced diode mixers  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号