首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of neutron radiation on the electroluminescence of the Si p-i-n diode containing a multilayered Ge/Si heterostructure with self-assembled nanoislands is studied. In comparison with bulk Si, the diodes containing Ge(Si) nanoislands exhibit a higher radiation hardness of the electroluminescence signal, which is attributed to spatial localization of charge carriers in the Ge/Si nanostructures. The spatial localization of charge carriers impedes their diffusion to radiation defects followed by nonradiative recombination at the defects. The results show the possibilities of using Ge/Si heterostructures with self-assembled nanoislands for the development of optoelectronic devices resistant to radiation.  相似文献   

2.
The results of studying the photoluminescence of the structures with Ge(Si) self-assembled islands embedded into tensile-strained Si layer are reported. The structures were grown on smooth relaxed Si1 ? x Gex/Si(001) (x = 0.2–0.3) buffer layers. The photoluminescence peak found in the photoluminescence spectra of the studied structures is related to the indirect (in real space) optical transition between the holes localized in the Ge(Si) islands and electrons localized in the tensile-strained Si layers under and above an island. It is shown that one can efficiently control the position of the photoluminescence peak for a specified type of structure by varying the thickness of the strained Si layers. It is found that, at 77 K, the intensity of the photoluminescence signal from the heterostructures with Ge(Si) self-assembled islands contained between the tensile-strained Si layers exceeds by an order of magnitude the intensity of the photoluminescence signal from the GeSi structures with islands formed on the Si(001) substrates.  相似文献   

3.
Comparative studies of the photoluminescence and electroluminescence of multilayer structures with self-assembled Ge(Si)/Si(001) islands are carried out. The luminescence signal from the islands is observable up to room temperature. Annealing of the structures induces a shift of the luminescence peak to shorter wavelengths. The shift is temperature dependent, making possible controllable variations in the spectral position of the luminescence peak of the Ge(Si) islands in the range from 1.3 to 1.55 μm. The enhancement of the temperature quenching of photoluminescence of the islands with increasing annealing temperature is attributed to the decrease in the Ge content in the islands during annealing and, as a result, to a decrease in the depth of the potential well for holes in the islands. The well-pronounced suppression of the temperature quenching of electroluminescence of the Ge(Si) islands in the unannealed structure with increasing pumping current is demonstrated.  相似文献   

4.
InGaAs/GaAs and Ge/Si light-emitting heterostructures with active regions consisting of a system of different-size nanoobjects, i.e., quantum dot layers, quantum wells, and a tunneling barrier are studied. The exchange of carriers preceding their radiative recombination is considered in the context of the tunneling interaction of nanoobjects. For the quantum well-InGaAs quantum dot layer system, an exciton tunneling mechanism is established. In such structures with a barrier thinner than 6 nm, anomalously fast carrier (exciton) transfer from the quantum well is observed. The role of the above-barrier resonance of states, which provides “instantaneous” injection into quantum dots, is considered. In Ge/Si structures, Ge quantum dots with heights comparable to the Ge/Si interface broadening are fabricated. The strong luminescence at a wavelength of 1.55 μm in such structures is explained not only by the high island-array density. The model is based on (i) an increase in the exciton oscillator strength due to the tunnel penetration of electrons into the quantum dot core at low temperatures (T < 60 K) and (ii) a redistribution of electronic states in the Δ24 subbands as the temperature is increased to room temperature. Light-emitting diodes are fabricated based on both types of studied structures. Configuration versions of the active region are tested. It is shown that selective pumping of the injector and the tunnel transfer of “cold” carriers (excitons) are more efficient than their direct trapping by the nanoemitter.  相似文献   

5.
The results of a study of the spectral and temporal characteristics of the photoluminescence (PL) from multilayer structures with self-assembled Ge(Si) islands grown on silicon and “silicon-on-insulator” substrates in relation to temperature and the excitation-light wavelength are presented. A substantial increase in island-related PL intensity is observed for structures with Ge(Si) islands grown on silicon substrates upon an increase in temperature from 4 to 70 K. This increase is due to the diffusion of nonequilibrium carriers from the silicon substrate into the active layer with the islands. In this case, a slow component with a characteristic time of ~100 ns appears in the PL rise kinetics. At the same time, no slow component in the PL rise kinetics and no rise in the PL intensity with increasing temperature are observed for structures grown on “silicon-on-insulator” substrates, in which the active layer with the islands is insulated from the silicon substrate. It is found that absorption of the excitation light in the islands and SiGe wetting layers mainly contributes to the excitation of the PL signal from the islands under sub-bandgap optical pump conditions.  相似文献   

6.
The effect of variations in the strained Si layer thicknesses, measurement temperature, and optical excitation power on the width of the photoluminescence line produced by self-assembled Ge(Si) nanoislands, which are grown on relaxed SiGe/Si(001) buffer layers and arranged between strained Si layers, is studied. It is shown that the width of the photoluminescence line related to the Ge(Si) islands can be decreased or increased by varying the thickness of strained Si layers lying above and under the islands. A decrease in the width of the photoluminescence line of the Ge(Si) islands to widths comparable with the width of the photoluminescence line of quantum dot (QD) structures based on direct-gap InAs/GaAs semiconductors is attained with consideration of diffusive smearing of the strained Si layer lying above the islands.  相似文献   

7.
The electrical properties of surface- and buried-channel p-MOSFETs containing strained GeSi heterostructures synthesized by high-dose Ge implantation and solid phase epitaxial growth have been investigated. Compared with Si control devices on the same chips, GeSi transistors exhibited improved performance: the channel hole mobility and linear transconductance was up to 18% higher for surface-channel GeSi transistors, and up to 12% higher for buried-channel GeSi p-MOSFETs, than for equivalent Si devices. Ion-beam synthesis of GeSi strained layers therefore offers an attractive means for realising improved device performance in conventional Si device structures  相似文献   

8.
The growth of self-assembled Ge islands on Si(001) surface and changes in the island structure parameters in the course of subsequent annealing were studied. Island structures possessing a small (~6%) scatter with respect to lateral dimensions and heights of the islands were obtained. The Raman spectra and X-ray diffraction data show evidence that silicon dissolves in the islands. The atomic fraction of Si in the resulting SixGe1?x solid solution was determined and the elastic strain in the islands was measured. It was found that annealing of the heterostructures with islands is accompanied by increasing Si fraction in the islands, which leads to changes in the island shape and size.  相似文献   

9.
The effect of growth temperature on photoluminescence is studied for structures with Ge(Si) islands grown on relaxed SiGe/Si(001) buffer layers and confined between strained Si layers. It is shown that, with decreasing growth temperature in the range from 700 to 630°C, the photoluminescence peak associated with the islands shifts to lower energies, which is due to the increase in Ge content in the islands and to suppression of degradation of the strained Si layers. The experimentally observed shift of the photoluminescence peak to higher energies with decreasing temperature from 630 to 600°C is attributed to the change in the type of the islands from domelike to hutlike in this temperature range. This change is accompanied by an abrupt decrease in the average height of the islands. The larger width of the photoluminescence peak produced by the hut islands in comparison with the width of the peak produced by the domelike islands is interpreted as a result of a wider size dispersion of the hutlike islands.  相似文献   

10.
Novikov  A. V.  Yurasov  D. V.  Baidakova  N. A.  Bushuykin  P. A.  Andreev  B. A.  Yunin  P. A.  Drozdov  M. N.  Yablonskiy  A. N.  Kalinnikov  M. A.  Krasilnik  Z. F. 《Semiconductors》2019,53(10):1318-1323
Semiconductors - Comparative studies of the luminescence properties of Sb-doped Ge layers grown on Ge(001) and Si(001) substrates are carried out. It is shown that, in contrast to the case of Ge:Sb...  相似文献   

11.
The electroluminescence (EL) of multilayered p-i-n structures with the self-assembled Ge(Si)/Si(001) islands are investigated. It is found that the structures with islands grown at 600°C have the highest intensity of the electroluminescence signal at room temperature in the wavelength range of 1.3–1.55 μm. The annealing of structures with the Ge(Si) islands leads to an increase in the EL-signal intensity at low temperatures and hampers the temperature stability of this signal, which is related to the additional Si diffusion into islands during annealing. The found considerable increase in the electroluminescence-signal intensity with the thickness of the separating Si layer is associated with a decrease in the elastic stresses in the structure with an increase in this layer’s thickness. The highest EL quantum efficiency in the wavelength range of 1.3–1.55 μm obtained in investigated structures amounted to 0.01% at room temperature.  相似文献   

12.
The results of investigation of the electroluminescence of multilayer p-i-n structures with Ge(Si)/Si(001) self-assembled islands are presented. The nonmonotonic dependence of the room-temperature intensity of the electroluminescence signal from islands on the Si spacer thickness is revealed. The highest electroluminescence signal intensity is observed for structures with a Si spacer thickness of 15?C20 nm. The significant decrease detected in the electroluminescence signal from the islands in structures with thick Si spacers (>20 nm) is explained by the formation of defect regions in them. The observed decrease in the electroluminescence signal in structures with thin Si layers is associated with a decrease in the Ge fraction in the islands in these structures, which is caused by enhanced Si diffusion into islands with increasing elastic strains in the structure.  相似文献   

13.
The generally accepted notions about the formation mechanisms for germanium islands with nanometer-scale sizes in a Ge-on-Si system are reviewed on the basis of analysis of recent publications. The presence of elastic strains in the epilayers and in the three-dimensional Ge islands on Si is a key factor that not only initiates a morphological transition from a planar film to an island-containing film (the Stranski-Krastanov mechanism) but also influences the subsequent stages of the islands’ evolution, including their shape, size, and spatial distribution. In many cases, this factor modifies appreciably the classical mechanisms of phase-formation and their sequence up to the quasi-equilibrium coexistence of three-dimensional Ge nanoislands at the surface of the Si substrate. The methods for improving the degree of the ordering of nanoislands to attain the smallest possible sizes and large density of areal distribution of these islands are discussed. The published data on optical absorption in the multilayered Ge-Si systems with quantum dots are considered; these data are indicative of an anomalously large cross section of intraband absorption, which makes this class of nanostructures promising for the development of photodetectors of the infrared region of the spectrum. The results of original studies of electrical and optical properties of heterostructures that involve Ge quantum dots and are synthesized by molecular-beam epitaxy on the Si substrates are reported.  相似文献   

14.
For use in electronic devices, self-assembled Ge islands formed on Si(001) must be covered with an additional Si layer. Chemically vapor deposited Si layers initially grow very rapidly over Ge islands because of the catalytic effect of Ge on the reaction of the Si-containing gas. The edges of the Si features covering Ge “pyramids” are rotated by 45° with respect to the edges of the Ge pyramids because of the different mechanisms orienting the Ge islands and the Si features. When multiple layers of islands are formed, the in-plane ordering of the Ge islands depends on the thickness of the Si interlayer separating the island layers. When selective Si is grown on a patterned Si wafer to form the underlying structure for the Ge islands, the position of the islands is influenced by the detailed shape of the Si near the edges, which in turn depends on the thickness of the selectively deposited Si, the pattern size, and the amount of surrounding oxide.  相似文献   

15.
Samples containing ultrathin InGaN layers that emit radiation in the spectral range from the ultraviolet to yellow region are studied. The samples are grown by metal-organic vapor-phase epitaxy. The Urbach energy, the localization energy of excitons, and the activation energy of charge carriers are determined to characterize radiative and nonradiative processes in the quantum dots and barriers of the structures. It is shown that these energy parameters are linearly dependent on the photon energy in the range from 3.05 to 2.12 eV. It is established that temperature variations in the emission intensity are due to the increase in the number of charge carriers thermally activated from the quantum wells into barriers as well as due to the enhancement of scattering of free excitons at defects.  相似文献   

16.
For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si0.85Ge0.15 layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.  相似文献   

17.
The topographic characteristics of cleaved surfaces in Ge/Si structures containing buried layers of GeSi nanoislands were investigated by atomic-force microscopy in atmospheric air. The relaxation of elastic stresses in islands and in adjacent regions of the Si matrix on the free cleaved surface was shown to result in local topographic features on the cleavages of the structures. It was found that the islands can appear on the cleaved surface in the form of two types of topographic features: as hillocks, if the cleavage plane directly crosses an island elastically compressed in the Si matrix, or as a pit, if the cleavage plane crosses the Si-matrix region adjacent to the island and subjected to tensile stress. The investigations performed showed the potential of the new method of studying buried nanoislands for revealing their presence; estimating their sizes, size distribution, and interaction effects in multilayer structures; and also for revealing strains associated with them.  相似文献   

18.
The results of studying the growth of self-assembled Ge(Si) islands on relaxed Si1?xGex/Si(001) buffer layers (x≈25%), with a low surface roughness are reported. It is shown that the growth of self-assembled islands on the buffer SiGe layers is qualitatively similar to the growth of islands on the Si (001) surface. It is found that a variation in the surface morphology (the transition from dome-to hut-shaped islands) in the case of island growth on the relaxed SiGe buffer layers occurs at a higher temperature than for the Ge(Si)/Si(001) islands. This effect can be caused by both a lesser mismatch between the crystal lattices of an island and the buffer layer and a somewhat higher surface density of islands, when they are grown on an SiGe buffer layer.  相似文献   

19.
GaAs?GaxAl1?xAs 4-layer heterostructures can exhibit a negative resistance at low temperatures if the p-type layers are doped with Si and Ge, respectively. A region of high resistivity is formed because of freezeout of carriers on deep levels. The effect can be described by Lampert's model of double injection.  相似文献   

20.
Semiconductors - The spatial distribution of the electric field in Ge/Si photodetector heterostructures coated with a gold film containing a regular two-dimensional array of subwavelength apertures...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号