首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of amorphous Si3N4 were prepared by the rf-sputtering method, and the effects of titanium and chlorine additives on its crystallization were examined. When Ti-doped amorphous Si3N4 was heated, TiN precipitated at >1100°C; the TiN precipitates promoted the conversion of amorphous Si3N4 to β-Si3N4. Chlorine led to preferential conversion of amorphous Si3N4 to α-Si3N4.  相似文献   

2.
The controlled crystallization of the amorphous grain boundary phase has been examined in a series of self-reinforced Si3N4 materials with added Y2O3, SrO, and CaO. The effects of time, temperature, atmosphere, glass content, glass chemistry, and matrix Si3N4 on the crystallization have been investigated. The stability of the crystallized product, the crystallization kinetics ( T-T-T curve), and crystallization mechanisms have also been examined. Crystallization produced an oxynitroapatite containing Y, Sr, and Ca over a broad range of heat-treatment conditions and glass compositions. The oxynitroapatite was compatible with Si3N4 and remained stable up to 1600°C. At low temperatures (<1350°C), the rate-limiting crystallization mechanism was oxygen diffuson in the glass, and at higher temperatures (>1350°C) the rate-limiting crystallization step changed to either the formation of new Si3N4 grains or solute diffusion in the glass.  相似文献   

3.
The synthesis and structure of a monodispersed spherical Si3N4/SiC nanocomposite powder have been studied. The Si3N4/SiC nanocomposite powder was synthesized by heating under argon a spherical Si3N4/C powder. The spherical Si3N4/C powder was prepared by heating a spherical organosilica powder in a nitrogen atmosphere and was composed of a mixture of nanosized Si3N4 and free carbon particles. During the heat treatment at 1450°C, the Si3N4/C powder became a Si3N4/SiC composite powder and finally a SiC powder after 8 h, while retaining its spherical shape. The composition of the Si3N4/SiC composite powder changed with the duration of the heat treatment. The results of TEM, SEM, and selected area electron diffraction showed that the Si3N4/SiC composite powder was composed of homogeneously distributed nanosized Si3N4 and SiC particles.  相似文献   

4.
The results of two-step oxidation experiments on chemically-vapor-deposited Si3N4 and SiC at 1350°C show that a correlation exists between the presence of a Si2N2O interphase and the strong oxidation resistance of Si3N4. During normal oxidation, k p for SiC was 15 times higher than that for Si3N4, and the oxide scale on Si3N4 was found by SEM and TEM to contain a prominent Si2N2O inner layer. However, when oxidized samples are annealed in Ar for 1.5 h at 1500°C and reoxidized at 1350°C as before, three things happen: the oxidation k p increases over 55-fold for Si3N4, and 3.5-fold for SiC; the Si3N4 and SiC oxidize with nearly equal k p's; and, most significant, the oxide scale on Si3N4 is found to be lacking an inner Si2N2O layer. The implications of this correlation for the competing models of Si3N4 oxidation are discussed.  相似文献   

5.
Commercial-grade Si3N4–TiN composites with 0, 10, 20, and 30 wt% TiN content have been characterized. Submicrometer grain-size Si3N4 was reinforced with fine TiN grains. Density, Young's modulus, coefficient of thermal expansion, and fracture toughness increased linearly with TiN content. Increased strength was observed in the Si3N4+20 wt% TiN, and Si3N4+30 wt% TiN composites. Fractography was used to characterize the different types of fracture origins. Improvements in toughness and strength are due to residual stresses in the Si3N4 matrix and the TiN particles. A threefold improvement in dry wear resistance of the Si3N4+30 wt% TiN composite over the Si3N4 matrix was observed.  相似文献   

6.
Long crack R -curve of a porous Si3N4 with aligned fibrous grains was investigated, using a chevron-notched beam technique. A crack was constrained to propagate normal to the grain alignment. The crack growth resistance of aligned porous Si3N4 was much larger compared with that of dense Si3N4 ceramics. Microstructure observations showed that pullouts of fibrous grains in aligned porous Si3N4 markedly increased during crack propagation relative to those of dense Si3N4, due to the existence of pores. The efficient grain pullouts in porous Si3N4 increased the bridging stress at the crack wake.  相似文献   

7.
Mineral oil lubricated rolling and sliding wear of SiC whisker (SiCw) reinforced Si3N4 composite and monolithic Si3N4 prepared identically against M2 tool steel were investigated using a cylinder-on-cylinder apparatus. Wear of this Si3N4 was higher than that of the composite. Wear of the steel against Si3N4 was also higher than that against the composite. Relatively larger scale microfracture occurred in the Si3N4 than in the composite; more pullout and microchipping of carbide particles were observed in the steel against Si3N4 than against the composite. Polishing of the worn surfaces of the steel occurred in both sliding and rolling tests. This was attributed to fine, hard wear debris circulating in the contact area. Spalling was observed in the steel sliding against Si3N4 but not in the steel sliding against the composite.  相似文献   

8.
The structure of interfaces formed by a Si3N4 grain and the silica-rich intergranular amorphous phase was investigated by quantitative high-resolution transmission electron microscopy (QHRTEM). It was found that the contrast and periodicity of the HRTEM image of β-Si3N4 strongly depend on the specimen thickness and objective lens focus value. The different thinning rate between Si3N4 and the glass phase during ion-milling results in gradients of the specimen thickness at the interfaces. The interface roughness can also lead to a thickness variation of Si3N4 near the interface parallel to the electron beam. As a result, the HRTEM micrographs, taken from the thin specimen regions near the interfaces at a certain defocus value, show the occurrence of an artifact of an ordered structure seemingly different from Si3N4. The present investigations, however, showed that no ordered phase actually different from that of Si3N4 at the interfacial region in Si3N4 could be identified so far. The interfacial structure is likely direct Si3N4/glass bonding, rather than an ordered transition phase between the Si3N4 and the glass phase.  相似文献   

9.
The corrosion mechanism of Si3N4+ Na2SO4/O2 at 1000°C was investigated. Corrosion of both pure and additive-containing Si3N4 was studied. The reaction of Si3N4+ Na2SO4 consists of an initial period of slow weight loss due to Na2SO4 vaporization and oxidation-dissolution. This initial period was the same for all forms of Si3N4. A second region consisted of further oxidation or near termination of reaction, depending on the additive in the Si3N4. A 5- to 10-μm yttrium depletion zone was found after corrosion for the Si3N4 with yttria additives. For comparison, Si and SiC were corroded under similar conditions. These materials corroded substantially faster than all forms of Si3N4.  相似文献   

10.
The heat treatment of silicon nitride (Si3N4) ceramics with additions of 8, 12, and 16 wt% Yb2O3 was carried out at different temperatures and the evolution of grain boundary (GB) phase was investigated systematically by X-ray diffraction (XRD) as well as scanning electron and transmission electron microscopic analyses. XRD results reveal that the extent and the ease of GB crystallization increase with increasing the Yb2O3 content, and that high heat-treatment temperatures in general favor crystallization of the quaternary compounds such as the Yb4Si2O7N2 phase. These results provide an insight into the GB phase evolution in the Yb-system Si3N4 ceramics subjected to a postsintering heat treatment.  相似文献   

11.
We report a stabilized Si3N4 simply with nanocoatings of h-BN. Very thin BN coatings are enough for suppressing the decomposition of Si3N4 particles. This approach should open up a new potential way to prepare stabilized Si3N4. Reduced nitridation of H3BO3-coated Si3N4 powder at 1050°C in a flowing mixed 40% N2+60% H2 atmosphere, and then following heat-treatment at 1500°C in a flowing N2 atmosphere can realize the nanocoating of BN on Si3N4 particles. Compared with the Si3N4 powder without nanocoatings of h-BN, TG and XRD analysis showed that the obtained h-BN nanocoated Si3N4 powder demonstrated obviously improved stability in argon atmosphere.  相似文献   

12.
Corrosion of Si3N4 under thin films of Na2CO3 was investigated at 1000°C. Pure Si3N4 and Si3N4 with various additives were examined. Thermogravimetric analysis and morphology observations lead to the following detailed reaction mechanism: (I) decomposition of Na2CO3 and formation of Na2SiO3, (II) rapid oxidation, and (III) formation of a protective silica layer below the silicate and a slowing of the reaction. For Si3N4 with Y2O3 additions, preferential attack of the grain-boundary phase occurred. The corrosion of pure Si and SiC was also studied for comparison to Si3N4. The corrosion mechanism generally applies to all three materials. Silicon reacted substantially faster than Si3N4 and SiC.  相似文献   

13.
Formation of N-phase in the system Mg,Si,Al/N,O was studied. Its composition was confirmed to be MgAl2Si4O6N4 (2Si2N2OMgAl2O4). Subsolidus phase relationships in the MgO–Si2N2O-Al2O3 system were determined. The results are discussed by comparing with two similar systems, CaO-and Y2O3–Si2N2O–Al2O3.  相似文献   

14.
The rate of dissolution of β-Si3N4 into an Mg-Si-O-N glass was measured by working with a composition in the ternary system Si3N4-SiO2-MgO such that Si2N2O rather than β-Si3N4 was the equilibrium phase. Dissolution was driven by the chemical reaction Si3N4(c)+SiO2( l )→Si2N2O(c). Analysis of the kinetic data, in view of the morphology of the dissolving phase (Si3N4) and the precipitating phase (Si2N2O), led to the conclusion that the dissolution rate was controlled by reaction at the crystal/glass interface of the Si3N4, crystals. The process appears to have a fairly constant activation energy, equal to 621 ±40 kJ-mol−1, at T=1573 to 1723 K. This large activation energy is believed to reflect the sum of two quantities: the heat of solution of β-Si3N4 hi the glass and the activation enthalpy for jumps of the slower-moving species across the crystal/glass interface. The data reported should be useful for interpreting creep and densification experiments with MgO-fluxed Si3N4.  相似文献   

15.
The optimization of concentrated Si3N4 powder aqueous slurry properties to achieve high packing density slipcast compacts and subsequent high sintered densities was investigated. The influence of pH, sintering aid powder (6% Y2O3, 4% Al2O3), NH4PA dispersant, and Si3N4 oxidative thermal treatment was determined for 32 vol% Si3N4 slurries. The results were then utilized to optimize the dispersion properties of 43 vol% solids Si3N4-sintering aid slurries. Calcination of the Si3N4 powder was observed to result in significantly greater adsorption of NH4PA dispersant and effectively reduced the viscosity of the 32 vol% slurries. Lower viscosities of the optimized dispersion 43 vol% Si3N4-sintering aid slurries resulted in higher slipcast packing density compacts with smaller pore sizes and pore volumes, and corresponding higher sintered densities.  相似文献   

16.
A W2C-nanoparticle-reinforced Si3N4-matrix composite was fabricated by sintering porous Si3N4 that had been infiltrated with a tungsten solution. During the sintering procedure, nanometer-sized W2C particles grew in situ from the reaction between the tungsten and carbon sources considered to originate mainly from residual binder. The W2C particles resided in the grain-boundary junctions of the Si3N4, had an average diameter of ∼60 nm, and were polyhedral in shape. Because the residual carbon, which normally would obstruct sintering, reacted with the tungsten to form W2C particles in the composite, the sinterability of the Si3N4 was improved, and a W2C–Si3N4 composite with almost full density was obtained. The flexural strength of the W2C–Si3N4 composite was 1212 MPa, ∼34% higher than that of standard sintered Si3N4.  相似文献   

17.
Sintering additives were incorporated into Si3N4 by attrition and ball milling using both Si3N4 and Al2O3 media. Dispersion of Y2O3 was observed by backscattered electron imaging. Attrition milling for only 15 min using an Si3N4 medium, was equivalent to 24 h of ball milling. Minimal contamination by the Si3N4 was encountered. [Key words: silicon nitride, yttria, comminution, sintering, dispersion.  相似文献   

18.
The nucleation and growth of Si3N4 on silane-derived Si powders was investigated with transmission electron microscopy and FTIR spectroscopy. Thermogravimetric analysis (TGA) was also used to monitor the process through different stages of the reaction. The FTIR and TEM results provide clear evidence that the nucleation of crystalline Si3N4 coincides with the onset of rapid nitridation. Electron diffraction indicates that Si3N4 forms heteroepitaxially on the Si powder surfaces, with Si (111) || Si3N4(0001) and Si     || Si3N4     . Also, flat interfaces between the Si and Si3N4 (compared to the initial spherical surface of the Si powders) indicate that a significant rearrangement of the particle surface occurs during the initial stages of nitridation. The results reported here demonstrate that the rapid, low-temperature nitridation observed with silane-derived powders is possible because the Si/vapor surfaces are not covered with a continuous Si3N4 product layer. The measured nitridation rates are comparable to Si evaporation rates, which suggests that Si vaporization is rate limiting. This is significantly different from conventional RBSN, where nitridation is limited by solid-state diffusion through a Si3N4 product layer.  相似文献   

19.
Abrasive Wear Behavior of a Si3N4-MoSi2 Composite   总被引:5,自引:0,他引:5  
MoSi2 particles (20 vol%) have been added to Si3N4 to form ceramic matrix-intermetallic composites. Benefits associated with the addition of the MoSi2 to Si3N4 include higher strength, higher fracture toughness, no loss in oxidation resistance, and lower electrical resistivity. However, because the hardness of MoSi2 is approximately half that of Si3N4, a decrease in the specific wear rate of the Si3N4-20 vol% MoSi2 composite is expected to result from the incorporation of the MoSi2 into the Si3N4. In this U.S. Bureau of Mines and Los Alamos National Laboratory study, it is found, however, that the specific wear rate of the composite during two-body abrasion by SiC particles is equivalent in magnitude to the specific wear rate of monolithic Si3N4. The specific wear rates of both the Si3N4-20 vol% MoSi2composites and monolithic Si3N4 are four to five times less than that of monolithic MoSi2.  相似文献   

20.
A Si3N4/TiC composite was previously demonstrated to exhibit improved wear resistance compared to a monolithic Si3N4 because of the formation of a lubricious oxide film containing Ti and Si at 900°C. Further improvements of the composite have been made in this study through additions of SiC whiskers and improved processing. Four materials—Si3N4, Si3N4/TiC, Si3N4/SiCwh, and Si3N4/TiC/SiCwh— were processed to further optimize the wear resistance of Si3N4 through improvements in strength, hardness, fracture toughness, and the coefficient of friction. Oscillatory pin on flat wear tests showed a decrease in the coefficient of friction from ∼0.7 (Si3N4) to ∼0.4 with the addition of TiC at temperatures reaching 900°C. Wear track profiles illustrated the absence of appreciable wear on the TiC-containing composites at temperatures above 700°C. Microscopic (SEM) and chemical (AES) characterization of the wear tracks is also included to deduce respective wear and lubricating mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号