首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
It has recently been found that TiNi shape memory alloy has another attractive property: high resistance to wear. The wear resistance of this alloy benefits from its pseudoelasticity (PE). It has, however, been noticed that other mechanical properties also affect the wear resistance, especially the hardness. Research was conducted to investigate the correlation between the wear resistance and both the PE and hardness. It has been demonstrated that when the PE is high, lower hardness leads to higher wear resistance.  相似文献   

2.
Abstract

Recent studies have demonstrated that TiNi shape memory alloy exhibits excellent wear resistance, benefiting from their pseudoelasticity (PE) due to a thermoelastic martensitic transformation. The maximum wear resistance of the alloys corresponds to an optimum balance between the PE and hardness, which is strongly influenced by heat treatment. In this work, the effect of aging treatment on martenstic transformation behaviour, mechanical properties, including the pseudoelasticity and hardness, and wear behaviour of a Ti–51 at.-%Ni alloy was investigated using differential scanning calorimetry, neutron diffraction, and micromechanical probing techniques. The main objective of the study was to understand the aging effect on wear behaviour of the TiNi alloy and explore the mechanisms involved for further improvement of this novel tribo-alloy.  相似文献   

3.
Abstract

The dry wear behaviour of 85Al–10La–5Ni (at.-%) alloy hot pressed has been studied. The result shows that 85Al–10La–5Ni alloy possessed excellent wear resistance. The wear resistance of the alloy pressed at 773 K is three times as high as that of the A355 aluminium alloy. The fine high hardness intermetallic compounds contribute to the wear resistance of the alloy.  相似文献   

4.
TiNi alloy has a high resistance to wear and could be an excellent candidate for various tribological applications. But studies show that oxygen active elements can improve properties of some alloys,markedly.Yttrium is one of the oxygen active elements.In this paper,the e-ects of yttria addition on properties of TiNi have been studied via micro-indentation,hardness,wear and corrosive wear tests.It is demonstrated that by addition of yttria to 5%,TiNi alloy can own improved mechanical properties and resistan...  相似文献   

5.
The bulk Al90Mn8Ce2 alloy is sintered by spark plasma sintering (SPS) method. The microstructures and the hardness and wear resistance of the Al90Mn8Ce2 samples are investigated. The results show that bulk Al90Mn8Ce2 alloy with less than 2% porosity has been obtained at 673 K. At 723 K the Rockwell hardness of the alloy reaches 97 HRB and the wear resistance of the alloy is three times as high as that of the conventional A390 aluminum alloy. The high wear resistance of the Al90Mn8Ce2 alloy is attributed to the existence of the large amount of the intermetallic compounds.  相似文献   

6.
The nickel alloys of the Inconel type (containing above 15wt% of chromium), used in many industrial applications including the manufacture of aircraft, chemistry, power generation, and material processing, have advantageous mechanical properties, high plasticity and good corrosion resistance, but their frictional wear resistance is poor. This drawback can be obviated by subjecting the alloys to various surface treatments.The paper describes the structure and properties of nitrided layers produced on the Inconel 625 nickel alloy (20wt%Cr, 10wt%Mo, 5wt%Fe, 1wt%Co, balance-Ni). It has been found that the diffusion-type chromium nitride layer produced on the alloy surface improves the hardness, frictional wear resistance, fatigue strength and corrosion resistance of the alloy. It was demonstrated that the nitriding process can be successfully used for prolonging the service life of the fiberizing disc intended for the fabrication of what is known as glass wool.  相似文献   

7.
铝合金专用黑色耐磨涂料的研制   总被引:3,自引:0,他引:3  
针对黑色阳极氧化膜层的修复研制了一种专用耐磨涂料,该涂料可直接喷涂在原阳极氧化膜层上,热固化成膜,膜层硬度高、耐磨性好,具有较优良的综合性能,解决了表面修复的难题,该涂料也可应用在其他金属材料的表面防护上。  相似文献   

8.
TiNi alloy has a high resistance to wear and could be an excellent candidate for various tribological applications. In this paper, it was demonstrated that by addition of yttrium, hardness properties and resistance to wear and corrosive wear of TiNi alloy were improved. New yttrium rich regions were formed in microstructure of TiNi alloy. The improved properties of this alloy by the yttrium addition could be attributed to the formation of these regions. The results showed that there was an optimum content for addition of yttrium between 2% and 5% (in wt%), and above this content the improvement in properties of TiNi became minor.  相似文献   

9.
In the present investigation, tribological behaviour of the hot extruded Al–Cu–Mg–Ag (matrix) alloy and the effect of Ti and TiB2 addition in matrix alloy have been studied. Hot extrusion was introduced to eliminate cast defects like porosity, voids and micro cracks. Addition of Ti and TiB2 particles increased the hardness of the matrix by grain refinement and dispersion hardening, respectively. It has been observed that the increase in hardness had significantly improved the wear resistance of the material. Detail study of the wear surfaces and debris were carried out to understand the wear mechanism of the samples. It revealed a complex mechanism of micro-cutting, plastic deformation, abrasion and delamination of the wear samples.  相似文献   

10.
为获得高硬度、高耐磨性的表面合金层,将镍基自熔合金粉末预先涂覆在Q235钢表面,利用碳弧热源进行熔覆制备熔覆层。通过金相显微镜、硬度计及磨粒磨损试验机对熔覆层表面的组织及性能进行测试,研究焊接电流和涂覆层厚度对熔覆层组织和性能的影响。结果表明:焊接电流相同,增加涂覆层厚度,熔覆层的表面硬度和耐磨性呈现先增加后降低的趋势;涂覆层较薄时,熔覆层硬度、耐磨性随电流增大而下降,涂覆层较厚时,熔覆层硬度、耐磨性随电流增大而呈上升趋势;当涂覆层厚为4 mm,焊接电流为200 A时,组织为镍基固溶体加共晶物,共晶组织为镍基固溶体与多种碳化物、硼化物共晶,硬度最高,为54.3 HRC,耐磨性最好。  相似文献   

11.
High strength Al85La10Ni5 alloy with less than 3% porosity has been obtained under certain pressing and heating conditions by a powder metallurgy method (P/M). The compression strength and the hardness of the P/M aluminum alloy reach 950 MPa and HRc 32, respectively. The wear resistance of the alloy pressed at 753 K is twice of the conventional aluminum alloy A355. The high strength and wear resistance of the P/M aluminum alloy is attributed to second-phase strengthening and fine-grain strengthening.  相似文献   

12.
钼及钼合金因具有高熔点、高硬度、力学性能优异等优点,被广泛应用于军工、航空和航天等领域。但钼及钼合金在高温使用时存在抗氧化、抗烧蚀和耐磨损性能较差等缺陷,严重影响了钼及钼合金的高温使用性能。研究发现,通过表面改性能有效解决上述问题。首先提出了高温应用钼及钼合金表面改性涂层需满足的基本要求,系统地综述了改性涂层在改善高温应用钼及钼合金抗氧化、抗烧蚀和耐磨损性能方面的研究进展,介绍了常见改性涂层的制备方法,并指出了目前该研究领域存在的问题及今后的发展方向。  相似文献   

13.
Plasma transferred arc (PTA) welded Ni and Co‐based alloys have gained high acceptance in many industrial applications for the wear protection of components. Recently, the cost of nickel and cobalt is rising drastically. This paper presents the development of a cost‐effective high chromium and vanadium containing iron‐based hardfacing alloy with high hardness and wear resistance. The welding processing of the alloy is carried out by PTA welding of atomized powders. Investigations on powder production as well as on weldability are presented. The coatings are metallographically studied by optical microscopy, SEM, EDX and micro‐hardness measurements. The wear resistance properties of the coatings are examined using pin on disk, dry sand rubber wheel and Miller testing, the corrosion properties are determined by immersion corrosion tests. The newly developed iron‐based alloy has nearly the same wear resistance as Ni‐based alloys with fused tungsten carbides at a higher level of corrosion resistance and much lower cost.  相似文献   

14.
The aerospace alloy, Ti–6Al–4V is a difficult material to machine, and, in general, shows poor wear resistance due to the soft, ductile properties of the alloy. In this study, the Ti–6Al–4V alloy has been heat treated to a temperature above and below the β-transus temperature and then quenched using a medium of oil, water or liquid nitrogen to change the surface wear behaviour of the alloy. The results showed that no significant change in microstructure and surface properties was achieved when the alloy was heated to 750 °C and then quenched in liquid nitrogen. However, when the alloy was heated to 1,000 °C (above the β-transus), the hardness of the titanium alloy significantly increased from 400 VHN to about 800 VHN, but the wear resistance of the alloy did not improve. In fact, the wear resistance of the alloy decreased as the surface hardness increased, and this change in wear behaviour was attributed to a change in the mechanism of wear from plastic deformation to brittle-fracture of the surface.  相似文献   

15.
钛合金表面加弧辉光离子渗镍铬及其性能研究   总被引:3,自引:0,他引:3  
采用加弧辉光离子渗金属新技术处理钛合金Ti5Al2.5Sn表面,研究了渗层的相组成特点,成分分布情况,评价了改性层的磨擦摩损性能,及与钛合金基体间的接触腐蚀相容性等。结果表明加弧辉光离子渗技术可以快速地在钛合金表面获得NiCr镀渗复合层。渗层由Ni3Ti等金属间化合物组成,其硬度、耐磨性能均高于离子注氮层,具有较高的抗含Cl^-1水溶液腐蚀性能,在含Cl^-1腐蚀环境中与钛合金基体接触相容。  相似文献   

16.
Heat treatment is of great significance to the performance improvement of high speed steel. Via heat treatment, the microstructure of high speed steel can be improved, thus greatly improving the material performance. The effect of tempering temperature on the microstructure of aluminium-bearing high boron high speed steel (AB-HSS) was investigated by optical microscope (OM), scanning electron microscope (SEM) and x-ray diffraction (XRD). The hardness and wear resistance of the alloy at different tempering temperatures were tested by Rockwell hardness tester, micro-hardness tester and wear tester. The experimental results indicate that the tempering microstructure of aluminium-bearing high boron high speed steel consists of α-Fe, M2B and a few of M23(C, B)6. Tempering temperature could greatly affect the wear resistance of materials. With the increase of tempering temperature, the wear resistance of aluminium-bearing high boron high speed steel firstly increase and then decrease. The alloy tempered at 450 °C has the best wear resistance and minimum wear weight loss. This study provides a reference for the formulation of heat treatment process of aluminium-bearing high boron high speed steel.  相似文献   

17.
新型高温耐磨合金   总被引:3,自引:0,他引:3  
新型铁基耐磨合金主要用于在高温烟气冲刷(蚀)条件下长期使用的零部件。文中论述了合金的成分设计、冶炼和铸造工艺,室温和高温硬度,以及合金的组织结构及高温抗氧化性。此合金在较低温度(600℃)时可以替代钴基高温耐磨合金,有应用前景。  相似文献   

18.
Abstract

The effects of volume fraction, particle size, and sintered porosity of FeCr (M7C3–M23C6) particulates on the abrasive wear resistance of powder metallurgy (PM) Fe alloy metal matrix composites have been studied under different abrasive conditions. It was seen that the abrasive wear rate of the composites increased with an increase in the FeCr volume fraction in tests performed with 80 grade SiC abrasive paper, but it decreased for tests conducted with 220 grade SiC abrasive paper. Furthermore, the wear rates decreased with an increase in FeCr size for composites containing the same amount of FeCr. Hence it is deduced that Fe alloy composites reinforced with larger size FeCr particles are more effective against abrasive wear than those reinforced with smaller ones. At the same time the results show that the beneficial effects of hard FeCr particulates on wear resistance far outweighed the detrimental effects of sintered porosity in the PM metal matrix composites. In addition, the fabrication of composites containing soft particles such as graphite or copper favours a reduction in the coefficient of friction, and increases the matrix hardness of the composite. For this reason graphite and copper were used in the matrix in different amounts to test their effect on the wear resistance. Increase in graphite and copper volume fraction allowed the formation of additional phases, which had high hardness and wear resistance. It was also found that the wear rate of the composites decreased considerably with graphite and copper addition.  相似文献   

19.
The hardness, impact toughness and wear resistance properties of Fe-TiC composites, synthesized by aluminothermic reduction of an industrial waste, have been evaluated. The wear resistance property of the composites has been compared with some standard wear resistant materials. It has been found that the wear resistance property of the Fe-TiC composites with mostly pearlitic, fully pearlitic and pearlitic plus cementite type matrix with about 7 to 8 vol% TiC is better than that of a standard high chromium iron. The wear resistance property of ferritic and mostly ferritic type matrix with about 5 vol% TiC is better than that of a standard bearing steel.  相似文献   

20.
In the present work, Al–30Mg2Si–2Cu alloy has been spray formed and subsequently hot pressed for densification. The alloy is then subjected to solutionizing and isothermal aging treatments. The microstructural features, hardness and wear behavior of spray formed and secondary processed alloys have been evaluated individually and compared with that of as-cast alloy. The microstructure of spray formed alloy showed refined and globular shaped primary Mg2Si intermetallic particles and Al2Cu precipitate particles uniformly distributed in Al matrix. The microstructure was refined further after hot consolidation. The microstructure after solution heat treatment appeared similar to that of the spray formed alloy but aging led to a further refinement in the microstructure compared to that of the hot pressed alloy. The evaluation of wear behavior of these alloys, under dry sliding condition, showed that the age hardened alloy exhibits maximum wear resistance and minimum coefficient of friction over the entire range of applied load (10–50 N) at a sliding speed of 2 ms−1 followed by hot pressed, spray formed and solution heat treated alloys. The as-cast alloy showed the least wear resistance and highest coefficient of friction. Similar trend has been observed even in their hardness values too. The wear resistance of the alloys is discussed in light of their microstructural modifications induced during spray forming and subsequent secondary processing and also the topography of worn surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号