首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma‐sprayed 8YSZ (zirconia stabilized with 8 wt% yttria)/NiCoCrAlYTa thermal barrier coatings (TBCs) were laser‐glazed using a continuous‐wave CO2 laser. Open pores within the coating surface were eliminated and an external densified layer was generated by laser‐glazing. The hot corrosion resistances of the plasma‐sprayed and laser‐glazed coatings were investigated. The two specimens were exposed for the same period of 100 h at 900 °C to a salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4). Serious crack and spallation occurred in the as‐sprayed coating, while the as‐glazed coating exhibited good hot corrosion behavior and consequently achieved a prolonged lifetime. The results showed that the as‐sprayed 8YSZ coating achieved remarkably improved hot corrosion resistance by laser‐glazing. Changes in the coatings were studied by scanning electron microscopy (SEM) to observe the microstructure and X‐ray diffraction (XRD) technique to analyze the phase composition. XRD results showed that the reaction between yttria (Y2O3) and V2O5 produced yttrium vanadate (YVO4), leaching Y2O3 from YSZ and causing the progressive destabilization transformation from the tetragonal (t) to monoclinic (m) phase. The external dense layer produced by laser‐glazing restrained the penetration of the molten salt, to a certain extent, into the coating, which led to a relatively low m‐ZrO2 content in the coating after the hot corrosion test. Additionally, the segmented cracks in the coating surface induced by laser‐glazing were helpful to the improvement of strain tolerance of the coating. The two factors were important contributions to the significant enhancement of hot corrosion resistance of the as‐glazed YSZ coating.  相似文献   

2.
Atomic layer deposition is introduced as a method suitable for preparation of Al2O3 layers on the surface of NiTi medical devices such as stents because of the excellent thickness control and conformal protective coating on complex structures. The corrosion properties of NiTi plates with Al2O3 coatings of various thicknesses in an environment similar to that occurring in the human body were studied using open circuit potential, potentiostatic electrochemical impedance spectroscopy, and cyclic polarization tests. It shows that the layer thickness plays a key role in the inhibition of corrosion. The thinner layers are more diffuse and make it easier for anodic reaction of passive NiTi with protective TiO2 underneath of Al2O3, while the thicker layers have the barrier effect with local pores initiating pitting corrosion. The results of our electrochemical experiments consistently show that corrosion properties of thick Al2O3 coatings on NiTi plate are inferior compared to the thin layers.  相似文献   

3.
Nanostructured La2Ce2O7-doped YSZ coatings were developed using atmospheric plasma-spraying technique by optimizing various process parameters. To ensure the retention of nanostructure, the molten state of nanoagglomerates was monitored using plasma and particle diagnostic tools. It was observed that the morphology of the coating exhibits a bimodal microstructure consisting of nanozones reinforced in a matrix of fully-molten particles. The thermal diffusivity of nano-LaCeYSZ coatings is lower than that of nano and bulk YSZ. The reason for this change in thermal diffusivity may be attributed to scattering of phonons at grain boundaries, point defect scattering and higher inter-splat porosity. Also, the thermal conductivity of the nanocomposite coatings was lower than those of nanostructured and bulk YSZ coatings. XRD results show cubic zirconia with a small amount of tetragonal zirconia. The average grain size of the as-sprayed La2Ce2O7-YSZ nanocomposite coatings is ~150-200 nm. The improved thermal behavior is mainly due to a dense, packed, and more compact structure of the coatings.  相似文献   

4.
为了提高热障涂层(TBC)的抗沉积物(主要成分为CaO、MgO、Al2O3和SiO2,简称CMAS)腐蚀性能,采用磁过滤阴极真空电弧(FCVA)技术在TBC表面上制备了致密的Al2O3覆盖层,比较和分析了Al2O3改性TBC和沉积态TBC的润湿行为和抗CMAS腐蚀性能。结果表明:使用FCVA技术制备Al2O3覆盖层的过程对7%(质量分数)氧化钇稳定的氧化锆(7YSZ)相的结构无明显影响,且经Al2O3改性的TBC综合性能均优于沉积态TBC。在1250 ℃、CMAS腐蚀条件下,Al2O3覆盖层有效地限制了熔融CMAS在TBC表面上的扩散行为。同时,Al2O3填充了7YSZ柱状晶之间的间隔并且阻碍了熔融CMAS的渗透,证明了FCVA可作为一种制备Al2O3涂层的新方法以提高TBC的抗CMAS腐蚀性能,且Al2O3涂层及其制备过程对TBC的热震性能均无消极影响。  相似文献   

5.
Air plasma sprayed TBCs usually include lamellar structure with high interconnected porosities which transfer oxygen from YSZ layer towards bond coat and cause TGO growth and internal oxidation of bond coat.The growth of thermally grown oxide (TGO) at the interface of bond coat and ceramic layer and internal oxidation of bond coat are considered as the main destructive factors in thermal barrier coatings.Oxidation phenomena of two types of plasma sprayed TBC were evaluated: (a) usual YSZ (yttria stabilized zirconia), (b) layer composite of (YSZ/Al2O3) which Al2O3 is as a top coat over YSZ coating. Oxidation tests were carried out on these coatings at 1100°C for 22, 42 and 100h. Microstructure studies by SEM demonstrated the growth of TGO underneath usual YSZ coating is higher than for YSZ/Al2O3 coating. Also cracking was observed in usual YSZ coating at the YSZ/bond coat interface. In addition severe internal oxidation of the bond coat occurred for usual YSZ coating and micro-XRD analysis revealed the formation of the oxides such as NiCr2O4, NiCrO3 and NiCrO4 which are accompanied with rapid volume increase, but internal oxidation of the bond coat for YSZ/Al2O3 coating was lower and the mentioned oxides were not detected.  相似文献   

6.
Three suspensions, containing oxide nanoparticle single phases, (Al2O3, 3YSZ and Cr2O3) were prepared and sprayed using High Velocity Suspension Flame Spraying (HVSFS) technique. The coatings were characterized concerning their mechanical properties by means of nano indenter hardness measurements (all coatings) and ball on disk tribometry (Al2O3, 3YSZ).APS and HVOF sprayed Al2O3 coatings were characterized under same conditions for comparison. X-ray diffraction analysis was performed on HVSF sprayed Al2O3 and Cr2O3 coatings and a plasma-sprayed Cr2O3 coating for comparison. A Williamson-Hall line profile analysis was performed to estimate and compare crystallite size in the coatings.  相似文献   

7.
Hot corrosion is one of the damage mechanisms in thermal barrier coatings (TBCs) due to the molten salt effects as a result of combustion of low quality fuel. In this study, the hot corrosion behaviour of alumina–yttria stabilized zirconia particle composite coatings produced by thermal spraying for use as a thermal barriers on industrial gas turbines and in jet engines was evaluated. Plasma sprayed coatings with three different amounts of alumina- yttria stabilized zirconia particle composite have been exposed to 50 wt % Na2SO4 + 50 wt % V2O5 corrosive molten salt temperatures at 1050°C for 60 hours. Damages in the coatings surface and cross section after hot corrosion tests have been studied by using a scanning electron microscope to observe the microstructure and x-ray diffraction techniques to analyze the phase composition. The results have shown that the amount of YVO4 crystals on the surface of YSZ coatings decrease while Al2O3 increases in YSZ + Al2O3 composition, therefore, the hot corrosion resistance of TBC improves with the addition of Al2O3.  相似文献   

8.
Hot corrosion studies of thermal barrier coatings (TBCs) with different YSZ/LaMgAl11O19 (LaMA) composite coating top coats were conducted in 50 wt.% Na2SO4 + 50 wt.% V2O5 molten salt at 950 °C for 60 h. Results indicate that TBCs with composite coating top coats exhibit superior oxidation and hot corrosion resistances to the TBC with the traditional YSZ top coat, especially for which has a LaMA overlay. The presence of LaMA can effectively restrain the destabilization of YSZ at the expense of its own partial degradation. The hot corrosion mechanism of LaMA coating and the composite coatings have been explored.  相似文献   

9.
The microstructures of three atmospheric plasma-sprayed (APS) Al2O3-ZrO2 coatings were investigated using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The differences in the microstructures of the three Al2O3-ZrO2 coatings, including their phase compositions, cracks, pores, grain sizes, and solid solutions, were analyzed in detail. A close relationship was observed between the thermal conductivities of the coatings and the microstructures, and the Al2O3-YSZ coatings with more spherical pores, fewer vertical cracks, and finer grains exhibited the lowest thermal conductivity of 0.91 W/m·K. Compared with YSZ coatings, Al2O3-YSZ coatings can exhibit lower thermal conductivity, which may be attributed to the formation of an amorphous phase, smaller grains, and Al2O3-YSZ solid solution.  相似文献   

10.
Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer (DCL) systems, which were deposited by electron beam physical vapor deposition (EB-PVD), were found to have a longer lifetime compared to the single layer La2Ce2O7 (LC) system, and even much longer than that of the single layer 8YSZ system under burner rig test. The DCL coating structure design can effectively alleviate the thermal expansion mismatch between LC coating and bond coat, as well as avoid the chemical reaction between LC and Al2O3 in thermally grown oxide (TGO), which occurs above 1000 °C as determined by differential scanning calorimetry (DSC) analysis. The failure mechanism of LC/8YSZ DCL coating is mainly due to the sintering of LC coating surface after long-term thermal cycling.  相似文献   

11.
The electrolytic reduction of a spent oxide fuel involves the liberation of the oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the process equipments such as the electroreducer and the salt purification vessel in the pyrochemical process. In this study, the corrosion behaviors of superalloys N-1, N-2 and N-3 in a molten LiCl-Li2O salt under an oxidizing atmosphere were investigated at 650 °C for 72 h to 216 h. Superalloy N-1 showed the highest corrosion resistance among the examined alloys. The corrosion products of superalloys N-1 and N-2 were NiO, Cr2O3, and NiCr2O4, while NiO, Cr2O3, LiAl2Cr3O8 were identified as the corrosion products of superalloy N-3. For superalloy N-1, its outer corrosion layer was more continuous, dense and adherent compared to those of N-2 and N-3.  相似文献   

12.
Ni–Co–Fe2O3 composite coatings were successfully developed by sediment co-deposition. In order to improve their hot corrosion resistance, a pre-oxidation treatment was conducted at 1000 °C for 6 h. The corrosion behaviour of the oxidised composite coating was investigated at 960 °C in an atmosphere consisting of a mixture of Na3AlF6–AlF3–CaF molten salts and air. They exhibited good hot corrosion resistance due to not only the pre-formed oxide scale with (Ni,Co)O and (Ni,Co)Fe2O4 phases after pre-oxidation, but also the formation of (Ni,Co,Fe)Al2O4 phases in the outer layer and a well-distributed NiFe2O4-enriched phase along the grain boundaries in the subscale area during the corrosion process.  相似文献   

13.
Plasma-sprayed ceramic coatings inherently contain pores and micro-cracks which is deleterious when performed in aggressive environment. Various methods were applied to the as-sprayed coatings in order to improve the corrosion resistance. In the investigation of this study, plasma-sprayed NiCrAl/Cr2O3-8 wt.%TiO2 coatings were sealed by epoxy resin and silicone resin, respectively. Coatings were characterized by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), optical microscopy (OM) and x-ray diffraction (XRD). The possible corrosion mechanism was discussed. The results of salt spray test and electrochemical measurements indicated that after the sealing treatment, the porosity of coatings decreased obviously and a compact layer was formed to protect the coating from corrosion. The silicone resin proved to be more effective than epoxy resin in enhancing the corrosion resistance of the coatings used in this research.  相似文献   

14.
Electroless Ni? P? Al2O3 composite coatings have been synthesized on mild steel shafts using surfactant cetyltrimethyle ammonium bromide (CTAB) as dispersant. The effects of the surfactant on the alumina dispersion, weight fraction in coatings, and corrosion resistance of the composite coatings under salt spray test were investigated. Results showed that alumina dispersion was improved, whereas weight fraction was decreased, with the increasing concentration of the dispersant CTAB. The corrosion resistance of the composite coatings was found to increase with the increase in CTAB concentration up to a certain optimum of 20 mg/L, beyond which a decreasing trend of corrosion resistance was observed under salt spray test. Compared with Ni? P coating, all the Ni? P? Al2O3 composite coatings showed improved corrosion‐resistant properties.  相似文献   

15.
The electrodeposited Ni/Al2O3 composite coatings were prepared by direct current (DC), pulse current (PC) and pulse reversal current (PRC) deposition, respectively. The corrosion behaviour of electrodeposited Ni/Al2O3 composite coatings covered with NaCl salt films at 800 °C in air was investigated by SEM/EDX, XRD and thermogravimetric analysis. It is found that corrosion of the three types of coatings is seriously aggravated with a present NaCl salt film, and a corrosion layer with a poor adherence to the matrix has been formed. Furthermore, chlorine enrichment at the interface between the matrix and the corrosion product has been observed. The corrosion resistance of the three types of coatings has improved with the increase of Al2O3 content. The corrosion resistance of the Ni/Al2O3 composite coatings prepared by PRC deposition is the best, and that by DC deposition is the worst. The corrosion mechanism of Ni/Al2O3 composite coatings will also be discussed.  相似文献   

16.
A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat. The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat. High temperature oxidation resistance of four types of atmospheric plasma sprayed TBCs was investigated. These coatings were oxidized at 1000 °C for 24, 48 and 120 h in a normal electric furnace under air atmosphere. Microstructural characterization showed that the growth of the TGO layer in nano NiCrAlY/YSZ/nano Al2O3 coating is much lower than in other coatings. Moreover, EDS and XRD analyses revealed the formation of Ni(Cr,Al)2O4 mixed oxides (as spinel) and NiO onto the Al2O3 (TGO) layer. The formation of detrimental mixed oxides (spinels) on the Al2O3(TGO) layer of nano NiCrAlY/YSZ/nano Al2O3 coating is much lower compared to that of other coatings after 120 h of high temperature oxidation at 1000 °C.  相似文献   

17.
《金属精饰学会汇刊》2013,91(4):181-187
Abstract

This paper presents results of a research on the corrosion resistance of composite Ni/Al2O3 coatings electrochemically deposited from Watts baths containing different amounts (0, 20, 100 g dm?3) of Al2O3 particles. Potentiodynamic tests and electrochemical impedance spectroscopy (EIS) measurements were carried out in a 3% solution of NaCl. The coatings with about 6 wt-% of corundum, deposited from a bath with 100 g dm?3 of a powder, showed the best protective properties. The rate of corrosion of such coatings after 7 days of exposure in the NaCl solution was over two times slower than that of coatings containing 2 wt-% of Al2O3 and six times slower than that of a standard nickel coating. Two equivalent circuits: one consisting of two RC circuits and the other one made up of three RC circuits were used for the analysis of the impedance spectra. Regardless of the presence and amount of the Al2O3 particles in the nickel coating, during first day of exposure in the NaCl solution a layer of nickel oxides and hydroxides forms on the surface of the coatings increasing their corrosion resistance. In the case of coatings with 6 wt-% of Al2O3, the passive layer is least vulnerable to the aggressive action of Cl? ions.  相似文献   

18.
Gas permeation behaviour through atmospheric plasma-sprayed 8 mol% yttria stabilized zirconia (YSZ) electrolyte coating was studied experimentally. YSZ coatings were fabricated using different powder feedstock. The temperature and velocity of in-flight particles during spraying were measured with a diagnostic system. The results showed that particle temperature and velocity were significantly influenced by the size of powders. The gas permeability of these coatings was estimated by a specific instrument with pure O2, N2 and H2. It was found that the gas permeability was reduced by decreasing the size of powder. Gas permeation behaviour through plasma-sprayed YSZ coating was studied. Transition flow was compatible to gas permeation behaviour for all three plasma-sprayed YSZ coatings. The relationship between gas permeation behaviour and coating microstructure is discussed in this article.  相似文献   

19.
In this paper, investigation into solid particle erosion behavior of atmospheric plasma-sprayed composite coating of CoCrAlY reinforced with Al2O3 and CeO2 oxides on Superni 76 at elevated temperature of 600 °C is presented. Alumina particles are used as erodent at two impact angles of 30° and 90°. The microstructure, porosity, hardness, toughness and adhesion properties of the as-sprayed coatings are studied. The effects of temperature and phase transformation in the coatings during erosion process are analyzed using XRD and EDS techniques. Optical profilometer is used for accurate elucidation of erosion volume loss. CoCrAlY/CeO2 coating showed better erosion resistance with a volume loss of about 50% of what was observed in case of CoCrAlY/Al2O3/YSZ coating. Lower erosion loss is observed at 90° as compared to 30° impact angle. The erosion mechanism evaluated using SEM micrograph revealed that the coatings experienced ductile fracture exhibiting severe deformation with unusual oxide cracks. Reinforced metal oxides provide shielding effect for erodent impact, enabling better erosion resistance. The oxidation of the coating due to high-temperature exposure reforms erosion process into oxidation-modified erosion process.  相似文献   

20.
Microstructures of radio frequency (RF) and direct current (DC) plasma-sprayed Al2O3 coatings deposited onto steel substrates were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), electron microprobe analysis (EMPA), polarizing optical microscopy (OM), and transmission electron microscopy (TEM). Because RF and DC plasmas produce different particle heating and acceleration, the morphology, phase structure, and fracture modes of the coatings vary substantially. In the case of RF coatings, a clear lamellar microstructure with relatively thick lamellae was observed, which is due to the large particles and the low particle velocities, with α-Al2O3 as the predominant phase and with delamination type of fracture detected on the fracture surface. In contrast, the DC coatings consisted of predominantly metastable γ-Al2O3 as well as amorphous phases, with a mixed fracture mode of the coating observed. In spite of limited interfacial interdiffusion detected by EMPA, TEM showed an interfacial layer existing at the interface between the coating and the substrate for both cases. For RF coatings, the interfacial layer on the order of 1 μm was composed of three sublayers, each of which was different in composition and morphology. However, the interfacial layer for the DC coating consisted primarily of an amorphous phase, containing both coating and substrate materials with or without platelike microcrystals; although in some regions a thick amorphous Al2O3 layer was in direct contact with the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号