首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates have been prepared by solid-state reactions in several sequential firing steps in the temperature range 1237–1473 K using stoichiometric mixtures of Dy2O3 (or Ho2O3) and GeO2. The heat capacity of the synthesized germanates has been determined as a function of temperature by differential scanning calorimetry in the range 350–1000 K. The experimentally determined C p (T) curves of the dysprosium and holmium germanates have no anomalies and are well represented by the Maier–Kelley equation. The experimental C p (T) data have been used to evaluate the thermodynamic functions of the Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates: enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(T).  相似文献   

2.
Layered α-form ZrNX (X: Cl and Br) compounds with high quality were prepared by chemical vapor transport. The intercalation of alkali metal A (A: Li, Na, K, Rb) was carried out to realize electron doping into the orthogonal [Zr2N2] layers. The Rietveld refinement analysis reveals that the [Zr2N2] crystalline layers in the intercalation compounds shift mutually in the ab plane when compared with the hosts. Magnetic measurements show that the intercalation compounds A x ZrNX are changed into superconductors with transition temperature T c of up to 12 K. Upon the cointercalation of solvent molecules such as THF, T c decreases to as low as 6.1 K with increasing the interlayer spacing d up to 14 Å, which is similar to the d dependence of T c recently found in electron-doped α-form TiNX series. We also succeeded in synthesizing another new polymorph of α-Zr2N2S by the topochemical reaction between α-form ZrNX and Na2S. α-Zr2N2S (space group: Immm, a = 4.1375(1) Å, b = 3.5422(1) Å, and c = 11.5204(3) Å) has the same α-[Zr2N2] layers, whereas the interlayer spacing between two adjacent [Zr2N2] layers is effectively decreased by 1/3 when compared with the parent compounds of ZrNX.  相似文献   

3.
Gd2Sn2O7 gadolinium stannate with the pyrochlore structure has been prepared by solid-state reaction and its high-temperature heat capacity has been determined by differential scanning calorimetry in the temperature range 350–1020 K. The Cp(T) data are shown to be well represented by the classic Maier–Kelley equation. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of gadolinium stannate: enthalpy increment H°(T)–H°(339 K), entropy change S°(T)–S°(339 K), and reduced Gibbs energy Ф°(Т).  相似文献   

4.
Tb2Sn2O7 has been prepared by solid-state reaction in air at 1473 K over a period of 200 h and its isobaric heat capacity has been studied experimentally in the range 350–1073 K. The C p(T) data for this compound have no extrema and are well represented by the classic Maier–Kelley equation. The experimental C p(T) data have been used to evaluate the thermodynamic properties of terbium stannate (pyrochlore structure): enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(Т).  相似文献   

5.
Through the measurement of resistivity, magnetic susceptibility, and Hall effect, we discovered a novel BiSe2-based superconductor Ca0.5La0.5FBiSe2 with T c of 3.9 K. A strong diamagnetic signal below T c in susceptibility χ(T) is observed indicating the bulk superconductivity. The negative Hall coefficient throughout the whole temperature regime implies the dominant electron-type carriers in the sample. Different to most of BiS2-based compounds where superconductivity develops from a semiconducting-like normal state, its resistivity in the present compound exhibits a metallic behavior down to T c . Together with the enhanced T c , the metallic character of the normal state implies that the electronic structure of Ca0.5La0.5FBiSe2 may be different to those in the other BiS2-based compounds.  相似文献   

6.
We report the results of magnetic, magnetocaloric properties, and critical behavior investigation of the double-layered perovskite manganite La1.4(Sr0.95Ca0.05)1.6Mn2O7. The compounds exhibits a paramagnetic (PM) to ferromagnetic (FM) transition at the Curie temperature T C = 248 K, a Neel transition at T N = 180 K, and a spin glass behavior below 150 K. To probe the magnetic interactions responsible for the magnetic transitions, we performed a critical exponent analysis in the vicinity of the FM–PM transition range. Magnetic entropy change (??S M) was estimated from isothermal magnetization data. The critical exponents β and γ, determined by analyzing the Arrott plots, are found to be T C = 248 K, β = 0.594, γ = 1.048, and δ = 2.764. These values for the critical exponents are close to the mean-field values. In order to estimate the spontaneous magnetization M S(T) at a given temperature, we use a process based on the analysis, in the mean-field theory, of the magnetic entropy change (??S M) versus the magnetization data. An excellent agreement is found between the spontaneous magnetization determined from the entropy change [(??S M) vs. M 2] and the classical extrapolation from the Arrott curves (µ0H/M vs. M 2), thus confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in this system and in other compounds as well.  相似文献   

7.
X-ray diffraction data are presented for combustion products in the Al-W-N system. New, nonequilibrium intermetallic compounds have been identified, their diffraction patterns have been indexed, and their unit-cell parameters have been determined. The phases α-and β-WAl4 are shown to exist in three isomorphous forms, differing in unit-cell centering. The phases α′-, α″-, and α?-WAl4 are monoclinic, with a 0 = 5.272 Å, b 0 = 17.770 Å, c 0 = 5.218 Å, β = 100.10°; point groups C12/c1, A12/n1, I12/a1, respectively. The phases β′-, β″-, and β?-WAl4 are monoclinic, with a 0 = 5.465 Å, b 0 = 12.814 Å, c 0 = 5.428 Å, β = 105.92°; point groups A112/m, B112/m, I112/m, respectively. The compounds WAl2 and W3Al7, identified each in two isomorphous forms, differ in cell metrics (doubling) but possess the same point group: P222. WAl 2 : orthorhombic, a 0 = 5.793 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. WAl 2 : orthorhombic, a 0 = 11.586 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 6.225 Å, b 0 = 4.806 Å, c 0 = 4.437 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 12.500 Å, b 0 = 4.806 Å, c 0 = 8.874 Å. The new phase WAl3: triclinic, P1, a 0 = 8.642 Å, b 0 = 10.872 Å, c 0 = 5.478 Å, α = 104.02°, β = 64.90°, γ = 107.15°.  相似文献   

8.
The Eu2Sn2O7 compound has been prepared by solid-state reaction (by sequentially firing a stoichiometric mixture of Eu2O3 and SnO2 in air at 1273 and 1473 K) and its heat capacity has been determined by differential scanning calorimetry in the temperature range 370–1000 K. The heat capacity data have been used to evaluate the thermodynamic properties of europium stannate: enthalpy increment H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and reduced Gibbs energy Ф°(T). Raman spectra of Eu2Sn2O7 polycrystals with the pyrochlore structure have been measured in the range 200–1200 cm–1.  相似文献   

9.
In this letter, we report on the growth and characterization of bulk Bi 2Se 3 single crystals. The studied Bi 2Se 3 crystals are grown by the self-flux method through the solid-state reaction from high-temperature (950 °C) melt of constituent elements and slow cooling (2 ℃/h). The resultant crystals are shiny and grown in the [00l] direction, as evidenced from surface XRD. Detailed Reitveld analysis of powder X-ray diffraction (PXRD) of the crystals showed that these are crystallized in the rhombohedral crystal structure with a space group of R3m (D5), and the lattice parameters are a = 4.14 (2), b = 4.14 (2), and c = 28.7010 (7) Å. Temperature versus resistivity (ρ?T) plots revealed metallic conduction down to 2 K, with typical room temperature resistivity (ρ 300 K) of around 0.53 m Ω-cm and residual resistivity (ρ 0 K) of 0.12 m Ω-cm. Resistivity under magnetic field [ ρ(T)H] measurements exhibited large + ve magneto-resistance right from 2 to 200 K. Isothermal magneto-resistance [ ρH] measurements at 2, 100, and 200 K exhibited magneto-resistance (MR) of up to 240 %, 130 %, and 60 %, respectively, at 14 T. Further, the MR plots are nonsaturating and linear with the field at all temperatures. At 2 K, the MR plots showed clear quantum oscillations at above say 10 T applied field. Also, the Kohler plots, i.e., Δρ/ ρ oversus B/ ρ, were seen consolidating on one plot. Interestingly, the studied Bi 2Se 3 single crystal exhibited the Shubnikov-de Haas (SdH) oscillations at 2 K under different applied magnetic fields ranging from 4 to 14 T.  相似文献   

10.
The Ho2S3-Ga2S3 system has been studied using differential thermal analysis, X-ray diffraction, microstructural analysis, microhardness tests, and density measurements, and its phase diagram has been constructed. The system contains three ternary compounds: Ho3GaS6, HoGaS3, and Ho6Ga10/3S14. Their melting behavior has been studied for the first time. The compound Ho6Ga10/3S14 melts congruently at 1435 K; Ho3GaS6 and HoGaS3 melt incongruently at 1370 and 1250 K, respectively. The Ho2S3-Ga2S3 system is a pseudobinary join of the ternary system Ho-Ga-S. At room temperature, the β-Ga2S3-based solid solution extends to 1.5 mol % Ho2S3; the Ho2S3 solubility in γ-Ga2S3 is 10 mol %. The compounds HoGaS3 and Ho3GaS6 crystallize in orthorhombic symmetry (Ho3GaS6: a = 10.40 Å, b = 13.20 Å, c = 6.44 Å, Z = 4; HoGaS3: a = 6.8 Å, b = 9.92 Å, a = 3.08 Å, Z = 4). Ho6Ga10/3S14 has a hexagonal structure (a = 9.62 Å, c = 6.04 Å).  相似文献   

11.
Empirical calculational approaches have been used to evaluate the enthalpy, entropy, heat capacity, and melting point of iron(II) niobate and iron(II) tantalate and the coefficients A, B, and C in an equation for the temperature dependence of their heat capacity. The melting point of FeTa2O6 has been experimentally determined to be 1891 ± 5 K. The calculated heat capacity (C°p (298.15 K)) of iron tantalate and the Gibbs energies of formation of FeN2O6 and FeTa2O6 have been compared to previously reported data.  相似文献   

12.
In this activity system Tl-Tl2X-X (X = S, Se)are studied using emf measurements of concentration chains relative thallic electrode. The solid phase diagrams of these systems are clarified, homogeneity areas of the compounds Tl6SCl4 and Tl5Se2Cl are determined. On the basis of emf measurement results, relative partial molar functions of thallium in alloys and standard integral thermodynamic functions (ΔG 0(298 K), ΔH 0 (298 K), ΔS 0 (298 K)) of the ternary compounds Tl6SCl4 and Tl5Se2 Cl and phases of variable composition based on the latter are calculated.  相似文献   

13.
The crystal structure of a previously unknown compound [CH3NH3][(UO2)(H2AsO4)3] was solved by direct methods and refined to R 1 = 0.038 for 3041 reflections with |F hkl | >-4σ |F hkl |. The compound crystallizes in the monoclinic system, space group P21/c, a = 8.980(1), b = 21.767(2), c = 7.867(1) Å, β = 115.919(5)°, V = 1383.1(3) Å3, Z = 4. In the structure of the compound, pentagonal bipyramids of uranyl ions, sharing bridging atoms with tetrahedral [H2AsO4]? anions, form strongly corrugated layered complexes [(UO2)(H2AsO4)3]? arranged parallel to the (100) plane. The protonated methylamine molecules [CH3NH3]+ form unidimensional tapelike packings parallel to the c axis and linked by hydrophilic-hydro-phobic interactions. The topology of the layered uranyl arsenate complex [(UO2)(H2AsO4)3]? is unusual for uranyl compounds and was not observed previously. A specific feature of this topology is the presence of monodentate arsenate “branches” arranged within the layer.  相似文献   

14.
Yb2Sn2O7 and Lu2Sn2O7 have been prepared by solid-state reactions, by firing mixtures of Yb2O3 or Lu2O3 and SnO2 at 1473 K, and the molar heat capacity of these compounds (pyrochlore structure) has been determined by differential scanning calorimetry. The C p (T) data have been used to evaluate the thermodynamic properties of the stannates: enthalpy increment, entropy change, and reduced Gibbs energy.  相似文献   

15.
We have studied general trends of crystallization from high-temperature solutions in the K2O-P2O5-V2O5-Bi2O3 system at P/V = 0.5?2.0, K/(P + V) = 0.7?1.4, and Bi2O3 contents from 25 to 50 wt % and identified the stability regions of BiPO4, K3Bi5(PO4)6, K2Bi3O(PO4)3, and K3Bi2(PO4)3 ? x (VO4) x (x = 0?3) solid solutions. The synthesized compounds have been characterized by X-ray powder diffraction and IR spectroscopy, and the structure of two solid solutions has been determined by single-crystal X-ray diffraction (sp. gr. C 2/c): K3Bi2(PO4)2(VO4), a = 13.8857(8), b = 13.5432(5), c = 6.8679(4) Å, β = 114.031(7)°; K3Bi2(PO4)1.25(VO4)1.75, a = 13.907(4), b = 13.615(2), c = 6.956(2) Å, β = 113.52(4)°.  相似文献   

16.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

17.
Two new U(VI) compounds, [((CH3)2CHNH3)(CH3NH3)][(UO2)2(CrO4)3] (1) and [CH3NH3][(UO2)· (SO4)(OH)] (2), were prepared by combining hydrothermal synthesis with isothermal evaporation. Compound 1 crystallizes in the monoclinic system, space group Р21, a = 9.3335(19), b = 10.641(2), c = 9.436(2) Å, β = 94.040(4)°. Compound 2 crystallizes in the rhombic system, space group Рbca, a = 11.5951(8), b = 9.2848(6), c = 14.5565(9) Å. The structures of the compounds were solved by the direct methods and refined to R1 = 0.041 [for 5565 reflections with Fo > 4σ(Fo)] and 0.033 [for 1792 reflections with Fo > 4σ(Fo)] for 1 and 2, respectively. Single crystal measurements were performed at 296 and 100 K for 1 and 2, respectively. The crystal structure of 1 is based on [(UO2)2(CrO4)3]2– layers, and that of 2, on [(UO2)(SO4)(OH)] layers. Both kinds of layers are constructed in accordance with a common principle and are topologically similar. Protonated isopropylamine and methylamine molecules are arranged between the layers in 1, and protonated methylamine molecules, in 2. Compound 1 is the second known example of a U(VI) compound templated with two different organic molecules simultaneously.  相似文献   

18.
We studied nearly optimally Ni-substituted BaFe2?x Ni x As2 (BFNA) single crystals with T C ≈ 18.5 K. In irreversible magnetization measurements, we determined the field dependence of the critical current density and discuss the nature of observed strong bulk pinning. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we directly determine two distinct superconducting gaps and resolve their moderate anisotropy in the momentum space. The BCS-ratio for the large gap 2Δ L /k B T C > 4.1 evidences for a strong coupling in the Δ L -bands.  相似文献   

19.
The crystal structure of a previously unknown compound KNa3[(UO2)5O6(SO4)] [space group Pbca, a = 13.2855(15), b = 13.7258(18), c = 19.712(2) Å, V = 3594.6(7) Å3] was solved by direct methods and refined to R 1 = 0.055 for 3022 reflections with |F hkl | ≥ 4σ |F hkl |. In the structure there are five sym-metrically nonequivalent uranyl cations. They are linked by cationcation (CC) interactions to form a pentamer whose central cation is U(2)O 2 2+ forming two three-centered CC bonds. All the uranyl ions are coordinated in the equatorial plane by five O atoms, which leads to the formation of pentagonal bipyramids sharing common edges to form layers parallel to the (100) plane. The sulfate tetrahedron links the uranyl layers into a 3D framework. The K+ and Na+ cations are arranged in framework voids. A brief review of CC interactions in U(VI) compounds is presented.  相似文献   

20.
We study the magnetic field vs. temperature (HT) and pressure vs. temperature (PT) phase diagrams of the T c ≈ 5.5 K superconducting phase in Pd x Bi2Te3 (x ≈ 1) using electrical resistivity versus temperature measurements at various applied magnetic fields (H) and magnetic susceptibility versus temperature measurements at various applied magnetic fields (H) and pressure (P). The HT phase diagram has an initial upward curvature as observed in some unconventional superconductors. The critical field extrapolated to T = 0 K is H c (0) ≈ 6–10 kOe. The T c is suppressed approximately linearly with pressure at a rate d T c /d P ≈ ?0.28 K/GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号