首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为了研究高体积分数SiCp/Al复合材料的切削机理及工件表面形貌,采用PCD刀具对干式切削和水溶性冷却液浇注冷却的湿式切削两种切削条件下的高速铣削进行了研究。结果表明,在对颗粒尺寸大、体积分数高的SiCp/Al复合材料进行高速铣削时,干式切削无论是在工件已加工表面形貌和微观结构,还是在切屑形成及形貌上,都好于湿式切削。两种切削条件下均可获得较理想的表面粗糙度。  相似文献   

2.
使用聚晶金刚石(PCD)刀具,对碳化硅颗粒增强铝基复合材料(SiCp/Al)进行高速铣削加工,研究了加工表面质量及切屑的形成机制。结果表明:刀具进给波纹、工件材料塑性侧流、刀具-工件相对振动和增强颗粒去除过程留下的孔洞、微裂纹、基体撕裂等是SiCp/Al复合材料高速铣削加工表面的主要形成机制;增大切削速度、使用冷却液、降低增强颗粒体积分数、减小增强颗粒尺寸均有助于提高加工表面质量;切屑形态为不均匀锯齿状,增强颗粒体积分数、热处理状态等对切屑形成有显著影响,绝热剪切、孔洞/微裂纹动态形成和扩展是切屑的主要形成机制。  相似文献   

3.
《机械科学与技术》2013,(9):1281-1286
使用聚晶金刚石刀具(PCD),在切削速度为1 200 m/min下,研究了增强颗粒体分比与尺寸、热处理状态和冷却方式等对SiC p/2009Al复合材料高速铣削加工性的影响。结果表明:减小体分比或使用冷却液有助于明显改善SiC p/2009Al复合材料高速铣削加工性。材料经热处理后,加工表面质量明显提高,但切削力显著增大、刀具耐用度明显降低、切屑锯齿形更加明显。体分比一定时,在一定程度范围内增大增强颗粒尺寸有助于降低切削力和切削温度、延长刀具耐用度,但加工表面质量有所下降。  相似文献   

4.
SiCp/Al复合材料高速铣削的有限元仿真研究   总被引:1,自引:0,他引:1  
《工具技术》2013,(9):34-38
运用有限元分析软件ABAQUS建立了三维斜角铣削模型,对SiCp/Al复合材料的的高速铣削过程进行模拟。首先分析了切削过程中SiCp/Al复合材料的应力、应变的分布规律,然后分析了不同等效切削厚度对切屑形状和温度场的影响,最后分析了切削参数对切削力的影响规律。铣削过程的有限元模拟为SiCp/Al复合材料高速铣削加工的工艺参数优化、刀具参数的合理选择提供了参考。  相似文献   

5.
《工具技术》2017,(12):47-50
针对PCD刀具高速铣削体积分数为65%的SiCp/Al复合材料,通过单因素和正交试验研究了不同铣削参数对表面粗糙度的影响。研究结果表明:影响SiCp/Al复合材料已加工表面粗糙度的最重要参数是每齿进给量,其次是铣削深度,铣削速度和铣削宽度对表面粗糙度的影响较小;铣削速度与铣削宽度之间存在一定的交互作用;为得到较好的表面粗糙度,可选择较高的铣削速度、适中的铣削深度和铣削宽度、较低的每齿进给量进行加工。  相似文献   

6.
为了研究摆线铣削加工方法下影响工件表面微观形貌的主要因素,采用不同切削参数进行了铣削加工实验,并结合功率谱密度法对获得的表面数据进行了更加全面的分析表征。实验结果表明:采用摆线铣削加工方式时,较大的径向切削深度有利于功率谱密度值降低,保证表面质量的同时,提高加工效率;每齿进给量和主轴转速分别和表面轮廓间距、加工振动联系紧密,影响表面凸起和缺陷;加工表面的主要频率分布能够反映加工工艺条件对加工表面形貌的影响。  相似文献   

7.
使用聚晶金刚石(PCD)刀具,在切削速度为1200m/min下对碳化硅颗粒增强铝基(SiCp/Al)复合材料进行铣削加工试验,研究SiCp/Al复合材料经T6热处理后对其高速铣削加工性的影响。结果表明:经T6热处理后,切削力/切削温度明显高于未热处理材料,切屑锯齿形明显,加工过程不稳定性增加,刀具承受冲击作用增大,导致PCD刀具发生较严重的崩刃、剥落、冲击裂纹等磨损形式,从而刀具使用寿命显著低于高速铣削未热处理材料。T6热处理材料高速铣削表面粗糙度Ra/Rz值一般低于未热处理材料,其加工表面变质层深度也显著低于未热处理材料,加工表面存在较少的坑洞、微裂纹、基体撕裂、基体涂覆等加工所致缺陷。  相似文献   

8.
9.
通过PCD刀具高速铣削高体积分数SiCp/Al复合材料试验,研究了铣削速度、进给量、铣削深度和铣削宽度对三向铣削分力的影响,并进行了SiCp/Al复合材料基体材料的铣削力对比.研究结果表明,进给量和铣削深度对三向铣削分力的影响较大,而铣削速度和铣削宽度对三向铣削分力的影响较小,并且SiC颗粒增加了材料的强度,使三向铣削分力数值增大.在只考虑控制铣削力大小的情况下应选取适中的铣削参数,如铣削速度、较大的铣削宽度和较小的进给量及铣削深度.  相似文献   

10.
高速铣削铝合金表面微观形貌分形机理研究   总被引:1,自引:0,他引:1  
胡家国 《工具技术》2005,39(3):20-24
基于工程粗糙表面的微观形貌具有统计自相似分形特征,将分形几何学应用于高速铣削表面微观形貌的研究,明确给出了铣削条件下分形参数的物理含义;从铣削加工工艺出发,编排正交多因素试验;采用结构函数法计算出高速铝合金铣削表面微观形貌的分维数。  相似文献   

11.
通过PCD刀具高速铣削高体积分数SiCp/A1复合材料试验,研究了铣削速度、进给量、铣削深度和铣削宽度对三向铣削分力的影响,并进行了SiCp/A1复合材料基体材料的铣削力对比。研究结果表明,进给量和铣削深度对三向铣削分力的影响较大,而铣削速度和铣削宽度对三向铣削分力的影响较小,并且SiC颗粒增加了材料的强度,使三向铣削分力数值增大。在只考虑控制铣削力大小的情况下应选取适中的铣削参数,如铣削速度、较大的铣削宽度和较小的进给量及铣削深度。  相似文献   

12.
SiC_p/Al复合材料属于典型难加工材料,大量Si C颗粒离散分布其中,导致在铣削加工高体积分数SiC_p/Al复合材料时,加工表面容易出现应力分布不均现象,严重影响材料的稳定性。为了研究SiC_p/Al复合材料加工表面残余应力,通过ABAQUS有限元分析软件建立了SiC_p/Al复合材料三维铣削有限元模型,并分析了切削工艺参数对残余应力的影响。结果表明:切削速度对残余应力变化影响较小,每齿进给量对残余应力变化影响较大,所得结果与经验计算值吻合较好。  相似文献   

13.
高速正交切削SiCp/Al复合材料切削温度仿真研究   总被引:1,自引:0,他引:1  
使用ABAQUS有限元软件对高体分SiCp/Al复合材料的颗粒和基体进行分别定义,仿真研究了高速切削复合材料时的温度场,分析了切削过程中切削用量和刀具角度对工件切削温度的影响。结果表明:在切削过程中,与刀具接触位置的颗粒温度较高且应力值较高;SiC颗粒的温度较Al基体的温度低;第一变形区发现一条沿着剪切角方向非常明显的温升带。在稳定切削阶段,与刀尖接触位置的工件温度较高,且应力集中现象总是发生在SiC颗粒上。随着切削深度和切削深度的增加,切削过程中工件的最高温度均随之增加;随着刀具前角和后角的增大,切削过程中工件的最高温度均随之降低。  相似文献   

14.
选择天然单晶金刚石和聚晶金刚石刀具,研究了增强颗粒质量分数(0-20%)、进给量(1~10μm/r)、刀尖圆弧半径(0.4~1.6mm)和刀具材料等因素对SiCp/A1复合材料超精密车削表面质量的影响。结果表明:在试验条件下,加工表面粗糙度R。随SiC含量的增加而显著增大,且加工表面的微坑洞、微裂纹和划痕等缺陷也显著增多;增大进给量,刀具一工件相对振动幅度增大,且加工表面的增强颗粒拔出、破碎现象增多;刀尖圆弧半径减小,表面粗糙度轮廓波动幅值增大,频谱图中进给分量对应的峰值更为显著;虽然单晶金刚石和聚晶金刚石刀具可获得相同或相近的Ra,但后者获得的表面含有更多的加工缺陷。  相似文献   

15.
把正交车铣方法应用到复合材料薄壁件的加工中,使用ABAQUS有限元仿真软件,建立了Si Cp/Al复合材料车铣薄壁件的仿真模型,通过高速正交车铣仿真实验研究了切削速度、工件转速、进给量和切削深度对切削力的影响规律。仿真实验得出切削深度对切削力影响最大,随切削深度的增加车铣切削力明显增大,因此该因素的参数选择在切削加工中应着重考虑;而其它三个因素对切削力的影响次之且影响程度相当,切削力变化趋势一致,都是随各因素参数增加而略有增大。  相似文献   

16.
直接金属氧化法制备SiCp/Al2O3-Al复合材料   总被引:2,自引:1,他引:2  
林营  杨海波  王芬 《机械工程材料》2005,29(6):27-29,47
利用直接金属氧化法制备了SiC颗粒增强Al2O3-Al基复合材料,借助于XRD和光学显微镜对该复合材料的组成及微观结构进行了观察,分析了SiO2层、合金成分和制备温度对复合材料性能的影响。结果表明:该复合材料结构致密且渗透完全,微观结构由三种相互穿插相组成:SiC预制体、连续的Al2O3基体及呈网状结构分布的未被氧化的残余铝合金。  相似文献   

17.
碳化硅颗粒增强铝基复合材料的制备及应用的研究   总被引:2,自引:0,他引:2  
综述了碳化硅颗粒增强铝基复合材料(SiCp/Al基复合材料)的研究进展,重点阐述了国内外现阶段碳化硅颗粒增强铝基复合材料的常用制备方法,并结合其应用现状进一步分析了各种常用制备方法的优缺点和未来的研究方向,在此基础上展望了其未来的发展和应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号