首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 103 毫秒
1.
氧化锆基固体电解质的研究进展   总被引:2,自引:0,他引:2  
综合介绍了氧化锆基固体电解质的粉体制备、成型与烧结、稳定剂及共掺杂的影响,氧化锆基电解质的电性能的老化,力学性能,与电极材料的兼容性、电解质薄膜制备的研究进展以及未来的发展趋势.由于氧化锆基固体电解质的操作温度较高,因此,电解质薄膜的制备工艺及其对电池性能的影响将是氧化锆基固体电解质未来的主要研究内容.此外,氧化锆基固体电解质的烧结性能、力学性能和高温抗老化性能也有待于进一步改善和提高.  相似文献   

2.
固体氧化物燃料电池(SOFC)具有高能量转化效率、环境友好性等特征,是全球能源环境问题的重要解决方案。电解质作为SOFC的关键组件,决定了电池的工作温度与输出性能。首先,以典型的氧化锆基电解质材料为例,介绍了其导电机理和导电性能的影响因素。为促进SOFC的商业化,电解质材料需在较低的工作温度下有较低的欧姆阻抗,电解质薄膜化是降低电池工作温度的有效方法。而后,从固相粉体成型、液相成型、气相成型3个方面综述了氧化锆基电解质薄膜的常见制备方法,并分析各种方法的优劣势。最后,对电解质薄膜的制备方法做简要展望。  相似文献   

3.
固体氧化物燃料电池(SOFC)适用于多种燃料气体,高效清洁,是最有前景的燃料电池之一。氧化钪(Sc2O3)掺杂二氧化锆(ZrO2)系列(ScSZ)使氧化锆基电解质表现出优异的离子导电性。ScSZ基电解质晶粒纳米化呈现出了很好的电学性能而得到广泛深入的研究。但是ScSZ基电解质在中低温下会发生相变,产生低导电性的菱形相而影响其离子电导率。系统总结了单元或二元氧化物掺杂ScSZ电解质在中低温下的物相、晶体结构及电导率。多元氧化物复合掺杂ScSZ可有效防止在中低温下发生相变、稳定立方相ScSZ。采用不同方法制备纳米ScSZ基电解质,可很好地提高电解质的电导率。提出了ScSZ系列在中低温范围内(600~800 ℃)的发展方向:优化掺杂成分和掺杂量提高晶粒晶界电导率,使用不同工艺制备纳米电解质或不同制备方法制备新型结构电解质材料。  相似文献   

4.
固体氧化物燃料电池YSZ电解质薄膜的制备方法概述   总被引:9,自引:2,他引:9  
固体氧化物燃料电池(SOFC)是一类既能发电,又无噪声污染、高效清洁的能量转换装置. 氧化钇稳定的氧化锆(YSZ)是应用最为广泛的SOFC电解质材料. SOFC制备的关键技术之一是获得足够薄且不透气的YSZ电解质薄膜. 本文综述了几种不同的制备YSZ电解质薄膜的方法,并对它们进行了分析和比较,讨论了它们各自的优缺点和应用场合. 最后,对用于固体氧化物燃料电池的YSZ薄膜制备方法进行了评述和展望.  相似文献   

5.
固体氧化物燃料电池(SOFC)作为一种绿色能源得到了广泛关注,SOFC中关键材料是电解质,LaGaO_3基固体电解质(LSGM)不仅离子电导率高,而且在电池工作时稳定性好,因此成为了研究焦点。本文综述了制备中低温固体氧化物燃料电池电解质LSGM的三种方法,包括传统的固相反应法、高温高压法和溶胶凝胶法;介绍了各种方法的流程以及它们各自的优缺点。  相似文献   

6.
固体氧化物燃料电池(SOFC)利用金属陶瓷作阳极材料,具有能量转换效率高、燃料适用性强和无腐蚀等优点,是当今一种先进的能量转换装置。本文分析了固体氧化物燃料电池在电解质和电极材料方面的性能和特点,研究了金属陶瓷阳极材料及SOFC单电池的伏安特性和性能,探讨了固体氧化物燃料电池的应用和发展前景。  相似文献   

7.
近年来,由于具有极高的理论转化效率,液态金属阳极直接碳固体氧化物燃料电池受到关注;然而,液态金属电极对电解质的腐蚀是降低其性能和限制其寿命的关键因素之一。本文综述了液态金属和氧化物,主要是液态锑(Sb)和氧化锑(Sb2O3),对固体氧化物燃料电池常用ZrO2和CeO2基电解质的化学和电化学腐蚀研究成果,并讨论了减缓腐蚀程度的途径与可能性。  相似文献   

8.
高温固体氧化物燃料电池(SOFC)的低温化对于解决材料的稳定性、提高系统运行寿命和降低电池成本具有重要的意义,已成为近几年的研发热点。在实现SOFC低温化方面,目前国内外研究学者提出了不同的解决策略。综述了低温固体氧化物燃料电池(LT-SOFC)中复合电解质的研究进展,其包括引入碳酸盐材料作为第二相进行复合,构建类熔融碳酸盐固体氧化物燃料电池;引入过渡金属氧化物材料作为第二相进行复合,制备单组分燃料电池消除电极与电解质界面电阻提高电池性能,尤其是全氧化物复合电解质提高电池稳定性策略;引入半导体材料复合进一步提升LT-SOFC的电化学性能等几个方面。最后阐述了通过制备新型纳米复合材料进一步提升电解质离子电导率,改善界面接触问题以及探索新的电极材料对LT-SOFC电化学性能的影响。  相似文献   

9.
燃料电池固体氧化物电解质研究进展   总被引:6,自引:0,他引:6  
本文对当前燃料电池用固体电解质材料的研究进展进行了综述.首先介绍了固体氧化物燃料电池的发展趋势及其与电解质材料性能的关系,然后分别对Y2O3稳定ZrO2(YSZ)、Sc2O3稳定ZrO2(ScSZ)、Ce基材料和其他一些电解质材料如Bi2O3、LaGaO3的制备、掺杂和电导率性能等方面进行了总结.最后,提出了今后电解质材料研的几个重要方向.  相似文献   

10.
掺杂CeO2基电解质是中低温固体氧化物燃料电池(SOFC)理想的电解质材料。首先阐述了掺杂CeO2基电解质结构与性能的关系,接着介绍了金属离子掺杂对CeO2基电解质晶体结构和电子结构的影响,重点综述了单元素掺杂和双元素掺杂对CeO2基电解质性能的影响。通过分析得出:稀土金属元素单掺杂比碱土金属元素单掺杂更能显著提高CeO2基电解质的导电性和可烧结性,但稀土氧化物的原料成本要远高于碱土氧化物;双元素掺杂比单元素掺杂具有更多的氧空位无序度和更小的氧离子迁移激活能,因此在提高CeO2基电解质的离子电导率方面更有优势。总结了CeO2基电解质材料的掺杂规律及构效关系,以期对制备出性能更加优异的CeO2基电解质起到一定的指导作用。  相似文献   

11.
典型的固体氧化物燃料电池(SOFC)由致密电解质、多孔阴极和阳极三部分构成。其中,电解质介于阴极和阳极之间,是一种具有全固态结构的氧化物陶瓷材料。电解质是SOFC的核心部件之一,是电池工作温度和电池性能的决定性因素。目前,对于高温电解质材料的研究与应用已经相对成熟。但是,在电池高温运行条件下,会导致电极和电解质界面反应、密封困难及使用寿命变短等问题。因此,SOFC电解质的发展逐渐趋向于中温化。但随着工作温度的降低,电解质欧姆阻抗(Ro)势必增大,使得电池的电导率下降。基于此,电解质在中温下的性能提升以及优化近年来备受关注。文中综述了几种不同类型的氧离子导体电解质最新研究进展,并论述了SOFC中低温运行条件下电解质性能提升的主要优化策略。  相似文献   

12.
钟理  陈建军 《现代化工》2003,23(1):9-11
综述了H2 S固体氧化物燃料电池 (SOFC)的发展历史和研制现状 ,包括固体电解质薄膜如质子传导膜和氧离子传导膜的开发、电极催化材料尤其是阳极催化材料的研制、以及整个电池系统的性能研究。指出H2 SSOFC在工业化过程中所面临和必须解决的关键技术问题是 :电解质薄膜材料的研制及其制备 ,尤其是薄膜化的制备技术 ;电极材料的开发及制备 ,特别是阳极催化材料的选择与制备技术 ;膜 -电极三合一制备技术。并对H2 SSOFC的开发及工业应用前景作了展望  相似文献   

13.
固体氧化物燃料电池电解质材料的研究进展   总被引:5,自引:1,他引:4  
固体氧化物燃料电池(SOFC)被誉为21世纪最具有发展潜力的能源材料之一,它的热效率高、燃料的适应性强,能很好地满足区域供电、供热的需要,具有重要的经济和社会意义。本文综述了SOFC电解质的研究进展,指出在诸多的电解质材料中,尽管氧化铋系电解质拥有最高的电导率,但由于其化学稳定性很差,难以获得广泛的应用;氧化钇全稳定的氧化锆(YSZ)由于其中低温的电导率较低,只适用于高温SOFC;稀土掺杂的氧化铈和LaGaO3钙钛矿材料拥有较高的中低温电导率,性质较为稳定,是适用于中低温SOFC的电解质材料。  相似文献   

14.
In recent years, fuel cell technology has attracted considerable attention from several fields of scientific research as fuel cells produce electric energy with high efficiency, emit little noise, and are non-polluting. Solid oxide fuel cells (SOFCs) are particularly important for stationary applications due to their high operating temperature (1,073–1,273 K). Methane appears to be a fuel of great interest for SOFC systems because it can be directly converted into hydrogen by direct internal reforming (DIR) within the SOFC anode. Unfortunately, internal steam reforming in SOFC leads to inhomogeneous temperature distributions which can result in mechanical failure of the cermet anode. Moreover this concept requires a large amount of steam in the fed gas. To avoid these problems, gradual internal reforming (GIR) can be used. GIR is based on local coupling between steam reforming and hydrogen oxidation. The steam required for the reforming reaction is obtained by the hydrogen oxidation. However, with GIR, Boudouard and cracking reactions can involve a risk of carbon formation. To cope with carbon formation a new cell configuration of SOFC electrolyte support was studied. This configuration combined a catalyst layer (0.1%Ir–CeO2) with a classical anode, allowing GIR without coking. In order to optimise the process a SOFC model has been developed, using the CFD-Ace+ software package, and including a thin electrolyte. The impact of a thin electrolyte on previous conclusions has been assessed. As predicted, electrochemical performances are higher and carbon formation is always avoided. However a sharp decrease in the electrochemical performances appears at high current densities due to steam clogging.  相似文献   

15.
A tubular anode-supported "micro-solid oxide fuel cell" (μSOFC) has been developed for producing high volumetric power density (VPD) SOFC systems featuring rapid turn on/off capability. An electrophoretic deposition (EPD)-based, facile manufacturing process is being refined to produce the anode support, anode functional and electrolyte layers of a single cell. μSOFCs (diameter <5 mm) have two main potential advantages, a substantial increase in the electrolyte surface area per unit volume of a stack and also rapid start-up. As fuel cell power is directly proportional to the active electrolyte surface area, a μSOFC stack can substantially increase the VPD of an SOFC device. A decrease in tube diameter allows for a reduction in wall thickness without any degradation of a cell's mechanical properties. Owing to its thin wall, a μSOFC has an extremely high thermal shock resistance and low thermal mass. These two characteristics are fundamental in reducing start-up and turn-off time for the SOFC stack. Traditionally, SOFC has not been considered for portable applications due to its high thermal mass and low thermal shock resistance (start-up time in hours), but with μSOFCs' potential for rapid start-up, new possibilities for portable and transportable applications open up.  相似文献   

16.
Proton‐conducting solid oxide fuel cells (H‐SOFC), using a proton‐conducting electrolyte, potentially have higher maximum energy efficiency than conventional oxygen‐ion‐conducting solid oxide fuel cells (O‐SOFC). It is important to theoretically study the current–voltage (JV) characteristics in detail in order to facilitate advanced development of H‐SOFC. In this investigation, a parametric modelling analysis was conducted. An electrochemical H‐SOFC model was developed and it was validated as the simulation results agreed well with experimental data published in the literature. Subsequently, the analytical comparison between H‐SOFC and O‐SOFC was made to evaluate how the use of different electrolytes could affect the SOFC performance. In addition to different ohmic overpotentials at the electrolyte, the concentration overpotentials of an H‐SOFC were prominently different from those of an O‐SOFC. H‐SOFC had very low anode concentration overpotential but suffered seriously from high cathode concentration overpotential. The differences found indicated that H‐SOFC possessed fuel cell characteristics different from conventional O‐SOFC. Particular H‐SOFC electrochemical modelling and parametric microstructural analysis are essential for the enhancement of H‐SOFC performance. Further analysis of this investigation showed that the H‐SOFC performance could be enhanced by increasing the gas transport in the cathode with high porosity, large pore size and low tortuosity.  相似文献   

17.
Solid oxide fuel cells (SOFCs) have attracted great interest as an alternative potential way to become the most efficient and cleanest electrochemical energy conversion system. The commercialization of SOFC technology is hindered by the degradation of component materials. The durable and high performing cathode materials is of immense importance in the durability improvement of SOFCs. Cobaltite type perovskite-based oxides have shown remarkable results but cation migration and formation of the insulating phases within and near the interface between cathode and electrolyte is often observed, which impacts greatly on the electrochemical performance and durability. Therefore, the reaction barrier layer (interlayer) typically made of doped ceria is required between cathode and electrolyte. The stability of this layer due to cations cross-migration between cathode and electrolyte and interdiffusion with electrolyte during fabrication and operation is presently one of the foremost issues (motivation) in the SOFC industry. The chemical and structural disparity associated with the cations migration and interdiffusion could affect the stability and functionality of different layers of SOFC. Understanding the formation of secondary phases and their evolution during the operating lifespan is thought-provoking because of the complexity of the system and the occurrence of numerous other processes simultaneously. In this review paper, the recent progress and advancement in this extent are presented, emphasizing the key driving forces, kinetics, analysis techniques at the micro- and nano-scale levels, and cations migration in extensively studied perovskite-based materials. An insightful understanding of the interdiffusion phenomenon taking place in the cathode/electrolyte/interlayer of SOFCs and control measures are then highlighted which is important to achieve the rational design of highly efficient SOFC with outstanding stable performance.  相似文献   

18.
质子传导陶瓷电解质燃料电池特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
谭小耀     孟波     杨乃涛     K.Li 《中国化学工程学报》2005,13(1):107-117
An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.05M0.05O3-α(M=Yb, Y) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号