首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because YM17E (1,3-bis[[1-cycloheptyl-3-(p-dimethylaminophenyl) ureido]methyl]benzene dihydrochloride) inhibits acyl coenzyme A:cholesterol acyltransferase (ACAT) it has potential application in the treatment of hypercholesterolaemia. In man and animals YM17E is extensively metabolized, via N-demethylation, to five active metabolites (M1, M2-a, M2-b, M3 and M4). The main objectives of this study were to examine inhibition of YM17E metabolism by the products and identify the cytochrome P450 isoforms in liver microsomes which catalyse in-vitro YM17E metabolism in man. In microsomes in man N-demethylation of YM17E to M1 occurred enzymatically; for up to 45 s the rate was linearly proportional to the microsomal protein concentration. This reaction was inhibited by metabolites M2-a, M2-b, M3 and M4. Further, N-demethylation of [14C]-YM17E was also inhibited by its product, M1. These results showed that primary metabolism of YM17E was inhibited by its products, and supported the finding that the non-linear increase in plasma concentration of the parent drug and metabolites observed in an in-vivo study was due to inhibition by these products. Metabolic activity in microsomes from ten individual human livers demonstrated that YM17E N-demethylase activity correlated closely with testosterone 6 beta-hydroxylase activity. When cytochrome P450 isozyme-specific substrates and chemical inhibitors were used to inhibit YM17E N-demethylase activity, CYP3A-specific substrate and inhibitors such as nifedipine, ketoconazole and triacetyloleandomycin strongly inhibited this activity, whereas CYP1A-specific substrate or inhibitor, ethoxyresorufin and alpha-naphthoflavone, inhibited weakly. Other CYP inhibitors, in contrast, had few or no effects. An inhibition study using anti-rat CYP1A1, CYP2B1, CYP2C11, CYP2E1 and CYP3A2 antibodies demonstrated that only anti-rat CYP3A2 antibody inhibited YM17E metabolism, to 40% of control level, with no other antibodies showing an inhibitory effect. Of seven cDNA-expressed P450 isoforms in man (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1 and CYP3A4), CYP3A4, CYP2D6 and CYP1A2 isozyme exhibited substantial catalytic activity of N-demethylation of YM17E. These results indicate the predominant role of CYP3A4 in liver metabolism of YM17E in man.  相似文献   

2.
Cytochrome P450 (CYP) involved in the two major pathways of imipramine (IMI) was reappraised using human liver microsomes phenotyped for S-mephenytoin 4'-hydroxylation in vitro and 11 recombinant human CYP isoforms. Individual Eadie-Hoffstee plots for IMI N-demethylation and 2-hydroxylation showed a monophasic profile in microsomes obtained from three putative S-mephenytoin poor metabolizer (PM) livers, whereas the plots gave a biphasic relationship (except for one case in 2-hydroxylation) in those from the three extensive metabolizer (EM) livers. Effects of CYP-selective inhibitor/substrate probes on the two metabolic reactions were examined at the two IMI concentrations (2 and 400 microM) with microsomes obtained from the two PM and three EM livers. S-mephenytoin inhibited IMI N-demethylation by 50% at the low concentration in microsomes from the EM livers with no discernible effect on this pathway in those from the PM livers. Furafylline inhibited the N-demethylation by about 60% at the low and high substrate concentrations in microsomes from both the EM and PM livers. Quinidine abolished the 2-hydroxylation at the low and high concentrations in microsomes from both the EM and the PM livers. Among the recombinant human CYPs, CYP2C19, 2C18, 2D6, 1A2, 3A4 and 2B6 in rank order catalyzed the N-demethylation, whereas CYP2D6, 2C19, 1A2, 2C18 and 3A4 catalyzed the 2-hydroxylation. The Km values obtained from recombinant CYP2C19 and 1A2 approximated those of the high- and low-affinity components from human liver microsomes for IMI N-demethylation, respectively. For IMI 2-hydroxylation, the respective Km values obtained from recombinant CYP2D6 and 2C19 were close to those of the high- and low-affinity components from human liver microsomes. Our human liver microsomal study using the near-therapeutic IMI concentration (2 microM) suggests that 1) CYP2C19 and 1A2 are involved in the N-demethylation and the 2-hydroxylation is mediated exclusively by CYP2D6 and partially by CYP2C19 in the EM livers, and 2) CYP1A2 and 2D6 play a major role in IMI N-demethylation and 2-hydroxylation, respectively, in the PM livers. Our recombinant human CYP isoform study, in general, supports this conclusion.  相似文献   

3.
Concentration dependency of stereoselective N-depropylation metabolism of propafenone was studied by using transgenic cell line expressing human CYP1A2. Enantiomers of propafenone and N-depropylpropafenone were separated and assayed simultaneously by RP-HPLC with precolumn GITC chiral derivatization. The experimental results showed that CYP1A2 was involved in enantioselective N-depropylation of propafenone and that the metabolic stereoselectivity depends on substrate concentration. For racemic propafenone, stereoselectivity was observed at low substrate concentration and was not seen at high substrate concentration. For individual isomers, S-(+)-propafenone was metabolized faster than its antipode at higher enantiomer concentrations and R-(-)-propafenone was eliminated faster than its antipode at lower enantiomer concentrations. There is interaction between S- and R-propafenone. R-(-)-propafenone inhibited the metabolism of S-(+)-propafenone with IC50 0.225 mmol/L for human CYP1A2.  相似文献   

4.
1. During liver regeneration in the male rat, the metabolic activities of imipramine were differentially affected depending on the specific metabolic pathways. Imipramine N-demethylation was markedly reduced whereas 2-hydroxylation showed only a moderate reduction following partial hepatectomy. 2. A slight decline was observed in the hepatic microsomal content of CYP2D apoprotein, whereas a substantial decrease occurred in CYP2C11 content during liver regeneration. Since imipramine 2-hydroxylation and N-demethylation are mediated by CYP2D and 2C11 respectively, metabolic pathway-specific alterations in the activities of imipramine metabolism are explained by the isozyme selective alteration in the levels of CYPs in regenerating liver. 3. No significant effect of regeneration was observed on expression of CYP2B1 and 2E1 apoproteins. CYP3A2 apoprotein, one of the male-specific CYP isoforms, was significantly suppressed in regenerating liver showing a similar pattern of alteration to the levels of CYP2C11. The alteration pattern of the CYP1A1 level was different to the above with a moderate decline at the first day post-operation and a marked rebound thereafter. 4. In the partially hepatectomized male rate, no significant increase in androstenedione 5-alpha reductase activity, an activity predominant in the female rat, was detected. It is concluded that the pattern of alterations of hepatic oxidative metabolism during liver regeneration was not related to the functional feminization of the liver.  相似文献   

5.
1. S-(-)-pulegone was administered orally to rat (250 mg/kg) and the nature of the urinary metabolites was investigated. Eleven metabolites, namely S-(-)-menthofuran, piperitone, piperitenone, p-cresol, 5-hydroxypulegone, 4-methylcyclohexenone, 3-methylcyclohexanone, isopulegone, pulegol, 7-hydroxypiperitone and benzoic acid, have been isolated from rat urine. It is assumed that menthofuran, isopulegone and 4-methylcyclohexenone retain the stereochemistry of the parent compound, whereas in other metabolites the stereochemistry at the asymmetric centres is not known. 2. The relative amounts of various major metabolites present in the total urine extracts from the R-(+) and S-(-)-pulegone-treated rat were established by glc analyses. Urine samples of rats treated with R-(+)-pulegone contained higher levels of p-cresol and piperitenone than in similar experiment carried out with S-(-)-pulegone, whereas the levels of unmetabolized pulegone, piperitone and benzoic acid were considerably higher in the urine of rat treated with S-(-)-pulegone than in a corresponding experiment with R-(+)-pulegone. 3. Phenobarbital-induced rat liver microsomes converted S-(-)-pulegone to S-(-)-menthofuran (VII) and piperitenone (III) in the presence of NADPH and O2. The levels of VII and III were significantly higher in similar experiments carried out with R-(+)-pulegone. 4. Based on these studies, metabolic pathways for the biotransformation of S-(-)-pulegone in rat have been proposed and possible reasons for the observed difference in the toxicity mediated by these two enantiomers are discussed.  相似文献   

6.
The antihypertensive agent diltiazem (DTZ) impairs hepatic drug metabolism by inhibition of cytochrome P450 (CYP). The accumulation of DTZ metabolites in serum occurs during prolonged therapy and leads to decreased DTZ elimination. Thus, DTZ metabolites may contribute to CYP inhibition. This study assessed the role of human CYPs in microsomal DTZ oxidation and the capacity of DTZ metabolites to inhibit specific CYP activities. DTZ N-demethylation varied 10-fold in microsomal fractions from 17 livers (0.33-3.31 nmol/mg of protein/min). DTZ oxidation was correlated with testosterone 6beta-hydroxylation (r = 0.82) and, to a lesser extent, tolbutamide hydroxylation (r = 0.59) but not with activities mediated by CYP1A2 or CYP2E1. CYP3A4 in lymphoblastoid cell microsomes catalyzed DTZ N-demethylation but CYP2C8 and CYP2C9 were also active (approximately 20% and 10% of the activity supported by CYP3A4); seven other CYPs produced little or no N-desmethyl DTZ from DTZ. The CYP3A4 inhibitors ketoconazole and troleandomycin decreased microsomal DTZ oxidation, but inhibitors or substrates of CYP2C, CYP2D and CYP2E1 produced no inhibition. Some inhibition was produced by alpha-naphthoflavone, a chemical that inhibits CYP1As and also interacts with CYP3A4. In further experiments, the capacities of DTZ and three metabolites to modulate human CYP 1A2, 2E1, 2C9 and 3A4 activities were evaluated in vitro. DTZ and its N-desmethyl and N,N-didesmethyl metabolites selectively inhibited CYP3A4 activity, whereas O-desmethyl DTZ was not inhibitory. The IC50 value of DTZ against CYP3A4-mediated testosterone 6beta-hydroxylation (substrate concentration, 50 microM) was 120 microM. The N-desmethyl (IC50 = 11 microM) and N,N-didesmethyl (IC50 = 0.6 microM) metabolites were 11 and 200 times, respectively, more potent. From kinetic studies, N-desmethyl DTZ and N,N-didesmethyl DTZ were potent competitive inhibitors of CYP3A4 (Ki = approximately 2 and 0.1 microM, respectively). CYP3A4 inhibition was enhanced when DTZ and N-desmethyl DTZ underwent biotransformation in NADPH-supplemented hepatic microsomes in vitro, supporting the contention that inhibitory metabolites may be generated in situ. These findings suggest that N-demethylated metabolites of DTZ may contribute to CYP3A4 inhibition in vivo, especially under conditions in which N-desmethyl DTZ accumulates, such as during prolonged DTZ therapy.  相似文献   

7.
Pyridine derivatives are widely used solvents and precursors for the synthesis of chemicals of industrial importance. Oxidized metabolites have been implicated in the observed toxicity of pyridines and are known to induce drug-metabolizing enzymes in rat liver. In this study the three isomeric picoline (methylpyridine) N-oxides, as major oxidized metabolites of 2-, 3- and 4-picoline, were evaluated as inducers of cytochrome P450 (CYP) enzymes in rat liver. After a single dose of 100 mg/kg 24 h before sacrifice the 3- and 4-isomers were effective inducers of microsomal substrate oxidations associated with the phenobarbital-inducible CYPs 2B; upregulation of CYP2B protein was confirmed by immunoblotting. In contrast, the 2-isomer did not increase CYP2B protein or activity in rat liver but CYP2E1 protein expression was upregulated by the isomers to 160-200% of control. The three chemicals increased aniline 4-hydroxylation activity in rat liver, which is consistent with induction of CYPs 2B or 2E1 and 4-nitrophenol 2-hydroxylation activity was increased in microsomal fractions from 3- and 4-picoline N-oxide-treated rats. The activities of several other CYPs were also determined and CYP1A-dependent 7-ethylresorufin O-deethylation was increased (to approximately 6- and 2-fold of control) by the 3- and 4-isomer, respectively, whereas the activity of CYP3A-mediated androstenedione 6beta-hydroxylation was decreased by the agents--most notably by the 2-isomer. During NADPH-supported oxidation of CCl4, lipid peroxidation was increased in microsomes from 3- and 4-picoline N-oxide-pretreated rats and was modulated in vitro by the CYP2B inhibitor orphenadrine, but not by the CYP2E1 inhibitor 4-methylpyrazole. These findings establish that particular isomers of picoline N-oxide rapidly upregulate CYP2B or, to a lesser extent, CYP2E1 and implicate CYP2B in the enhanced lipid peroxidation observed in microsomes from rats treated with 3- and 4-picoline N-oxides. Such induction process may contribute to the hepatotoxicity of pyridines by enhancing the capacity for microsomal lipid peroxidation.  相似文献   

8.
Metabolism of the cholinergic channel activator [N-methyl-3H]ABT-418 was studied using precision-cut tissue slices and microsomes (+/- cytosol) prepared from a single chimpanzee liver. In both cases, the products of C-oxidation (lactam) and N'-oxidation (cis > trans) were detected. In the presence of chimpanzee liver microsomes and cytosol, which had been characterized with respect to the levels of aldehyde oxidase (N1-methylnicotinamide oxidase), NADPH-dependent flavin-containing monooxygenase (FMO; N, N-dimethylaniline N-oxidase), and various cytochrome P450 (CYP)-dependent monooxygenase activities, ABT-418 lactam and N'-oxide formation was found to be largely dependent on CYP/aldehyde oxidase and FMO, respectively. The rank order of total (trans + cis) FMO-dependent N'-oxidation in liver microsomes was dog > rat > rabbit > chimpanzee > or = cynomolgus monkey > human. It is concluded that the metabolic profile of ABT-418 in the chimpanzee is unique. First, the C-/N'-oxidation ratio in liver slices (0.43) is similar to that of the rat and dog and dissimilar to that of the rat and dog and dissimilar to that of the two other primate species studied; human and cynomolgus monkey (C-/N'-oxidation ratio > or = 9.4). Second, the pattern of ABT-418 N'-oxidation observed with chimpanzee liver microsomes, and liver slices (trans:cis = 1:3), differs from that of rat, rabbit, and dog liver microsomes, rat and human kidney S-9 (trans > cis), human liver microsomes (trans:cis approximately 1:1), and cynomolgus monkey (trans:cis approximately 2:1) liver microsomes. Lack of stereoselective N'-oxidation by human FMO was confirmed with cDNA-expressed FMO3.  相似文献   

9.
Cyclobenzaprine (Flexeril) is a muscle relaxant, possessing a tricyclic structure. Numerous therapeutic agents containing this structure are known to be metabolized by polymorphic cytochrome P4502D6. The aim of this study was to determine if cytochrome P4502D6 and other isoforms are involved in the metabolism of cyclobenzaprine in human liver microsomes. Selective cytochrome P450 inhibitors for CYP1A1/2 (furafylline and 7,8-benzoflavone) and CYP3A4 (troleandomycin, gestodene, and ketoconazole) inhibited the formation of desmethylcyclobenzaprine, a major metabolite of cyclobenzaprine, in human liver microsomes. Antibodies directed against CYP1A1/2 and CYP3A4 inhibited the demethylation reaction whereas anti-human CYP2C9/10, CYP2C19, and CYP2E1 antibodies did not show any inhibitory effects. When a panel of microsomes prepared from human B-lymphoblastoid cells that expressed specific human cytochrome P450 isoforms were used, only microsomes containing cytochromes P4501A2, 2D6, and 3A4 catalyzed N-demethylation. In addition, demethylation catalyzed by these recombinant cytochromes P450 can be completely inhibited with selective inhibitors at concentrations as low as 1 to 20 microM. Interestingly, cyclobenzaprine N-demethylation was significantly correlated with caffeine 3-demethylation (1A2) and testosterone 6 beta-hydroxylation (3A4) but not with dextromethorphan O-demethylation (2D6) in human liver microsomes. To further determine the involvement of cytochrome P4502D6 in cyclobenzaprine metabolism, liver microsomes from a human that lacked CYP2D6 enzyme activities was included in this study. The data showed that cyclobenzaprine N-demethylation still occurred in the incubation with this microsome. These results suggested that cytochrome P4502D6 plays only a minor role in cyclobenzaprine N-demethylation whereas 3A4 and 1A2 are primarily responsible for cyclobenzaprine metabolism in human liver microsomes. Due to the minimum involvement of CYP2D6 in the vitro metabolism of cyclobenzaprine, the polymorphism of cytochrome P4502D6 in man should not be of muci concern in the clinical use of cyclobenzaprine.  相似文献   

10.
1. Roxithromycin and its major metabolites found in rat and human urine, namely the decladinosyl derivative (M1), O-dealkyl derivative (M2) and N-demethyl derivative (M3), were incubated with rat liver microsomes and formation of an inhibitory cytochrome P450 (CYP)-metabolite complex and of formaldehyde (measurement of N-demethylation) were determined in vitro. Troleandomycin and erythromycin were also used for comparison. 2. Dexamethasone very significantly induced the microsomal N-demethylations of these macrolide antibiotics. The order of magnitude for the Vmax/Km ratio of N-demethylations by liver microsomes from dexamethasone-treated rats was troleandomycin > erythromycin = M2 > roxithromycin > M3, M1. 3. Formation of an inhibitory P450 x Fe2+-metabolite complex was detected on incubation of these macrolide antibiotics with rat liver microsomes in the presence of an NADPH-generating system and the order of maximum complex formation was troleandomycin > erythromycin > M2 > roxithromycin > M3 > M1. 4. Troleandomycin, erythromycin and M2 inhibited CYP3A-dependent testosterone 6beta-hydroxylation catalysed by liver microsomes from the dexamethasone-treated rat by 54, 33 and 23%, respectively, but roxithromycin, M3 and M1 were very weak by comparison. In the untreated rat, only testosterone 6beta-hydroxylation, but not testosterone 16alpha- and 2alpha-hydroxylation and androstenedione formation, activities were inhibited, indicating that inhibitory actions of these antibiotics are specific for CYP3A enzymes in liver microsomes. 5. These results support the view that formation of an inhibitory P450-metabolite complex is prerequisite for the inhibition of CYP3A-dependent substrate oxidations by rat liver microsomes and that M2 (and M3, to a lesser extent) may be the active metabolite that can form an inhibitory P450-metabolite complex by CYP3A enzyme(s).  相似文献   

11.
The microsomal ethanol oxidizing system comprises an ethanol-inducible cytochrome P-4502E1, but the involvement of other P-450s has also been suggested. In our study, human CYP2E1, CYP1A2, and CYP3A4 were heterologously expressed in HepG2 cells, and their ethanol oxidation was assessed using a corresponding selective inhibitor: all three P-450 isoenzymes metabolized ethanol. Selective inhibitors-4-methylpyrazole (CYP2E1), furafylline (CYP1A2), and troleandomycin (CYP3A4)-also decreased microsomal ethanol oxidation in the livers of 18 organ donors. The P-450-dependent ethanol oxidizing activities correlated significantly with those of the specific monooxygenases and the immunochemically determined microsomal content of the respective P-450. The mean CYP2E1-dependent ethanol oxidation in human liver microsomes [1.41+/-0.11 nmol min(-1) (mg protein)(-1)] was twice that of CYP1A2 (0.61+/-0.07) or CYP3A4 (0.73+/-0.11) (p < 0.05). Furthermore, CYP2E1 had the highest (p < 0.05) specific activity [28+/-2 nmol min(-1) (nmol CYP2E1)(-1) versus 17+/-3 nmol min(-1) (nmol CYP1A2)(-1), and 12+/-2 nmol min(-1) (CYP3A4)(-1), respectively]. Thus, in human liver microsomes, CYP2E1 plays the major role. However, CYP1A2 and CYP3A4 contribute significantly to microsomal ethanol oxidation and may, therefore, also be involved in the pathogenesis of alcoholic liver disease.  相似文献   

12.
We studied atrazine (ATZ) metabolism in male and female rat liver microsomes in vitro, and the major metabolite was deisopropylatrazine (DeiPr-ATZ) with deethylatrazine (DeEt-ATZ) and 1-hydroxyisopropylatrazine (iPrOH-ATZ) as minor metabolites in both sexes. The enzyme kinetics of ATZ biotransformation were examined by means of Eadie-Hofstee analyses. Although no remarkable sex difference of Michaelis Menten values for each pathway was observed, Cl(int)S (Vmax/Km) for DeiPr-ATZ, DeEt-ATZ and iPrOH-ATZ were slightly higher in female than in male rats. The formation of DeiPr-ATZ, DeEt-ATZ and iPrOH-ATZ from ATZ was substantially inhibited by SKF-525A, metyrapone, diallyl sulfide, 7-ethoxycoumarin, benzphetamine, nicotine, testosterone and lauric acid in both sexes. Cimetidine effectively inhibited the formation of all metabolites in male rats. On the other hand, the inhibition rates of the formation of DeiPr-ATZ and iPrOH-ATZ by cimetidine in female rats were lower than those in male rats, and DeEt-ATZ was hardly affected by the chemicals. In contrast with the results for cimetidine, the inhibition of ATZ biotransformation by bufuralol was more effective in female than in male rats. Anti-rat CYP2B1 and CYP2E1 antibodies effectively inhibited DeiPr-ATZ, DeEt-ATZ and iPrOH-ATZ formations in both sexes. Anti-rat CYP2C11 antibody also inhibited the three metabolites in both sexes, with the inhibition rates higher in male than in female rats, similar to cimetidine. In the case of anti-rat CYP2D1 antibody, the inhibitory effect on ATZ biotransformation in male rats was less than that in female rats. On the other hand, anti-rat CYP1A2, CYP3A2 and CYP4A1 antibodies did not affect the ATZ biotransformation in either sex. There was no significant correlation between the formation rate of ATZ metabolites and P450 isoform levels in either sex. These results may mean that CYP2B2, CYP2C11, CYP2D1 (only iPrOH-ATZ formation) and CYP2E1 in male rats, and CYP2B2, CYP2D1 and CYP2E1 in female rats are involved ATZ metabolism in liver, and that the substrate specificity of P450 isoforms for ATZ is broad.  相似文献   

13.
The role of different cytochrome P450 isozymes (CYP) in the N-demethylation of chlorimipramine and chlorpromazine has been investigated in liver microsomes from rats by studying the effects of multiple subchronic doses of chlorimipramine, chlorpromazine, phenobarbital and beta-naphthoflavone on the N-demethylation of ethylmorphine, mono-N-demethyl-chlorimipramine and chlorpromazine and on the hydroxylation of aniline. With control microsomes, CYP-dependent metabolism of chlorimipramine and chlorpromazine (100 nmol; 30 min incubation) resulted in the formation of predominantly chlorimipramine (46.5 +/- 4.9 nmol) whereas chlorpromazine (14.1 +/- 0.9 nmol) accounted for only part of the overall metabolism of chlorpromazine. Multiple doses of chlorimipramine increased the capacity of microsomes to N-demethylate ethylmorphine (9.8 +/- 0.73 and 6.08 +/- 0.06 nmol min(-1) (mg protein)(-1) for chlorimipramine-treated and control rats, respectively) as well as itself (4.65 +/- 0.25 and 3.10 +/- 0.33 nmol min(-1) (mg protein)(-1), respectively). Multiple doses of chlorpromazine induced aniline-hydroxylase activity (1.11 +/- 0.16 and 0.94 +/- 0.06 nmol min(-1) (mg protein)(-1) for chlorimipramine and control microsomes, respectively) but the capacity to N-demethylate itself was unchanged. Phenobarbital treatment induced ethylmorphine N-demethylation activity, but did not affect N-demethylation activity, towards chlorimipramine and chlorpromazine. In control microsomes the N-demethylation capacity of chlorimipramine or chlorpromazine (0.160 +/- 0.025 and 0.015 +/- 0.003 nmol min(-1) (mg protein)(-1), respectively) was one order of magnitude lower than that of chlorimipramine or chlorpromazine. The capacity to N-demethylate either chlorimipramine or chlorpromazine was increased by treatment with either phenobarbital or beta-naphthoflavone. In control microsomes, sulphaphenazole markedly inhibited both chlorimipramine-N-mono- and di-N-demethylation, whereas quinidine markedly inhibited the rate of formation of chlorpromazine. The CYP2C and CYP2D subfamilies seem to be involved in the mono N-demethylation of chlorimipramine and chlorpromazine, respectively. Moreover the CYP1A and CYP2B subfamilies might participate in the N-demethylation of either chlorimipramine or chlorpromazine. This could have important implications in the clinical use of chlorimipramine and chlorpromazine in view of the genetic polymorphism of CYP2C and CYP2D isozymes in man.  相似文献   

14.
The relationship was investigated between biochemical and morphological changes in chloroform (CHCl3)- and carbon tetrachloride (CCl4)-induced liver damage. The time courses of hepatic microsomal cytochrome P450 (CYP) content, hepatic microsomal CYP2E1 activity, hepatic reduced glutathione (GSH) content, plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were examined in relation to the liver morphology in rats orally treated with CHCl3 or CCl4 (3.35 mmol/kg). The CYP content and the activity of CYP2E1 markedly decreased in the CCl4-treated rats 3 h after treatment compared to much lower decreases in the CHCl3-treated rats. The hepatic GSH content was decreased to a similar extent in both groups of rats at 3 h after treatment; in the CCl4-treated rats, the GSH content continued to decrease, reaching a minimum at 24 h and without attaining the normal level at 72 h after treatment. By contrast, hepatic GSH content in the CHCl3-treated rats began to increase from 6 h, attaining complete recovery 48 h after treatment. Plasma ALT and AST activities were significantly elevated by CCl4 as early as 3 h after treatment, while the activities in the CHCl3-treated rats did not increase until 6 h after treatment. In both groups of rats, ALT and AST activities reached a maximum at 24 h, and gradually decreased, remaining at abnormal levels at 72 h. Hepatic cells in the CCl4-treated rats were found to be necrotic as early as 3 h post-treatment, whereas few or no morphological changes appeared in the liver of CHCl3-treated rats. The extent of necrosis was at a maximum 24 h after treatment in both CHCl3- and CCl4-treated rats. In addition, some necrotic cells remained in the liver of CCl4-treated rats 72 h after treatment, while the necrosis in the CHCl3-treated rats was almost negligible. The present results indicate that almost the same time-courses of biochemical and morphological changes were followed in rats of both the CHCl3- and CCl4-treated groups.  相似文献   

15.
Buprenorphine (BN) is a thebaine derivative with analgesic properties. To identify and characterize the cytochrome P450 (CYP) enzyme(s) involved in BN N-dealkylation, in vitro studies using human liver microsomes and recombinant human CYP enzymes were performed. Norbuprenorphine formation from BN was measured by a simple HPLC-UV assay method, without extraction. The BN N-dealkylation activities in 10 human liver microsomal preparations were strongly correlated with microsomal CYP3A-specific metabolic reactions, i.e. triazolam 1'-hydroxylation (r = 0.954), midazolam 1'-hydroxylation (r = 0.928), and testosterone 6beta-hydroxylation (r = 0.897). Among the eight recombinant CYP enzymes studied (CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), only CYP3A4 could catalyze BN N-dealkylation. The apparent KM value for recombinant CYP3A4 was similar to that for human liver microsomes (23.7 vs. 39.3 +/- 9.2 microM). The demonstration of BN N-dealkylation by recombinant CYP3A4 and the agreement in the affinities (apparent KM values) of human liver microsomes and recombinant CYP3A4 provide the most supportive evidence for BN N-dealkylation being catalyzed by CYP3A4.  相似文献   

16.
Human liver microsomes are capable of oxidizing lauric acid (laurate), a model medium-chain fatty acid, at both the omega- and omega-1 positions to form 12- and 11-hydroxylaurate, respectively. These laurate hydroxylation reactions are apparently catalyzed by distinct P450 enzymes. While the P450 responsible for microsomal laurate omega-1 hydroxylation in human liver has been identified as CYP2E1, the enzyme catalyzing omega-hydroxylation remains poorly defined. To that end, we employed conventional purification and immunochemical techniques to characterize the major hepatic laurate omega-hydroxylase in humans. Western blotting with rat CYP4A1 antibodies was used to monitor a cross-reactive P450 protein (M(r) = 52 kDa) during its isolation from human liver microsomes. The purified enzyme (7.4 nmol P450/mg protein) had an NH2-terminal amino acid sequence identical to that predicted from the human CYP4A11 cDNA over the first 20 residues found. Upon reconstitution with P450 reductase and cytochrome b5, CYP4A11 proved to be a potent laurate omega-hydroxylase, exhibiting a turnover rate of 45.7 nmol 12-hydroxylaurate formed/min/nmol P450 (12-fold greater than intact microsomes), while catalyzing the omega-1 hydroxylation reaction at much lower rates (5.4 nmol 11-hydroxylaurate formed/min/nmol P450). Analysis of the laurate omega-hydroxylation reaction in human liver microsomes revealed kinetic parameters (a lone Km of 48.9 microM with a VMAX of 3.72 nmol 12-hydroxylaurate formed/min/nmol P450) consistent with catalysis by CYP4A11. In fact, incubation of human liver microsomes with antibodies raised to CYP4A11 resulted in nearly 85% inhibition of laurate omega-hydroxylase activity while omega-1 hydroxylase activity remained unaffected. Furthermore, a strong correlation (r = 0.89; P < 0.001) was found between immunochemically determined CYP4A11 content and laurate omega-hydroxylase activity in liver samples from 11 different subjects. From the foregoing, it appears that CYP4A11 is the principle laurate omega-hydroxylating enzyme expressed in human liver.  相似文献   

17.
Kinetic analysis of the metabolism of amitriptyline and nortriptyline using liver microsomes from Wister rats showed that more than one enzyme was involved in each reaction except for monophasic amitriptyline N-demethylation. The Vmax values particularly in the high-affinity sites for E-10-hydroxylation of both drugs were larger than those for Z-10-hydroxylations. Their E- and E-10-hydroxylase activities in Dark-Agouti rats, which are deficient for CYP2D1, were significantly lower than those in Wistar rats at a lower substrate concentration (5 microM). The strain difference was reduced at a higher substrate concentration (500 microM). A similar but a smaller strain difference was also observed in nortriptyline N-demethylase activity, and a pronounced sex difference (male > female) was observed in N-demethylation of both drugs in Wistar and Dark-Agouti rats. The reactions with the strain difference were inhibited concentration-dependently by sparteine, a substrate of the CYP2D subfamily, and an antibody against a CYP2D isoenzyme. The profiles of these decreased metabolic activities corresponded to that of the lower metabolic activities in Dark-Agouti rats. These results indicated that a cytochrome P450 isozyme in the CYP2D subfamily was involved in E- and Z-10-hydroxylations of amitriptyline and nortriptyline in rat liver microsomes as a major isozyme in a low substrate concentration range. It seems likely that the CYP2D enzyme contributes to nortriptyline N-demethylation.  相似文献   

18.
Ergosterol biosynthesis inhibiting fungicides (EBIFs) have complex effects on the hepatic microsomal monooxygenase systems of vertebrate species, having been described as mixed inducers and inhibitors of cytochrome P450. In the current study, we examined the effects of two EBIFs in clinical use, clotrimazole and ketoconazole, and two agricultural EBIFs, propiconazole and vinclozolin, on hepatic monooxygenase activities and P450 apoprotein expression in the male Sprague-Dawley rat and the male bobwhite quail. EBIFs produced Type II binding spectra with hepatic microsomes from both species and were effective inhibitors of methoxyresorufin O-demethylase, an activity selective for P450 isozymes in gene family 1. However, the EBIFs varied widely in their effectiveness as inducers of P450 isozymes in gene families 1, 2, 3 and 4, both within the same species and between species. In the rat, clotrimazole was the most effective inducer, increasing expression of CYP 3A isozymes over 450-fold, CYP 2B1/2 30-fold and CYP 1A1/2 12-fold and suppressing expression of CYP 2C11 nearly 70%. By contrast, in the quail, clotrimazole was the least effective inducer. In quail, vinclozolin and propiconazole elevated total P450 content 10- and 7-fold, respectively. The induction response also appeared to be mixed, but in this case consisted of a 5-fold induction of P450s in gene family 1A, a 3-fold induction of P450s in gene family 3A and 4A, and induction of protein(s) from gene family 2, cross-reactive with antisera against rat CYP 2C11 and CYP 2A1. A protein that was cross-reactive with antibodies raised against rat CYP 2B1 was decreased with EBIF treatment. In conclusion, EBIFs have complex patterns of induction, suppression and inhibition of cytochrome P450 isozymes in both mammals and birds, which vary according to both the fungicide and the species.  相似文献   

19.
The novel cytochrome P450, CYP2B19, is a specific cellular marker of late differentiation in skin keratinocytes. CYP2B19 was discovered in fetal mouse skin where its onset of expression coincides spatially (upper cell layer) and temporally (day 15.5) with the appearance of loricrin-expressing keratinocytes during the stratification stage of fetal epidermis. CYP2B19 is also present postnatally in the differentiated keratinocytes of the epidermis, sebaceous glands, and hair follicles. CYP2B19 mRNA is tightly coupled to the differentiated (granular cell) keratinocyte phenotype in vivo and in vitro. In primary mouse epidermal keratinocytes, it is specifically up-regulated and correlated temporally with calcium-induced differentiation and expression of the late differentiation genes loricrin and profilaggrin. Recombinant CYP2B19 metabolizes arachidonic acid and generates 14,15- and 11, 12-epoxyeicosatrienoic (EET) acids, and 11-, 12-, and 15-hydroxyeicosatetraenoic (HETE) acids (20, 35, 18, 7, and 7% of total metabolites, respectively). Arachidonic acid metabolism was stereoselective for 11S,12R- and 14S,15R-EET, and 11S-, 12R-, and 15R-HETE. The CYP2B19 metabolites 11,12- and 14,15-EET are endogenous constituents of murine epidermis and are present in similar proportions to that generated by the enzyme in vitro, suggesting that CYP2B19 might be the primary enzymatic source of these EETs in murine epidermis.  相似文献   

20.
The activity of human liver microsomal cytochrome P450 1A2 (CYP1A2) is readily estimated by following the O-deethylation of [O-ethyl 14C]phenacetin (PODase). The basis of the assay is the quantitative measurement of [14C]acetaldehyde, remaining in the supernatant of assay incubates, after extraction of unmetabolized [O-ethyl 14C]phenacetin with charcoal. In the presence of native human liver microsomes (K(m) = 54 +/- 27 microM; V(max) = 14 +/- 2.3 nmol/hr/mg; mean +/- SD; N = 3 different livers) and human B-lymphoblastoid cell microsomes containing cDNA-expressed CYP1A2 (K(m) = 46 microM; V(max) = 55 nmol/hr/nmol CYP), PODase activity conformed to monophasic Michaelis-Menten kinetics. Furthermore, PODase activity in a panel of microsomes prepared from a series of human livers was significantly correlated (r = 0.91; p < 0.001; N = 11) with CYP1A2-selective 7-ethoxyresorufin O-deethylase activity, and was markedly inhibited (> or = 92%) by furafylline (FURA, IC50 = 0.4 microM) and 7,8-benzoflavone (ANF, IC50 = 0.1 microM), two well known CYP1A2 inhibitors. Inhibitors selective for other forms of CYP (e.g. CYP3A, CYP2C, CYP2D6, CYP2E1) elicited a marginal effect (< or = 17% inhibition) at relatively high concentrations (> or = 10.K(i)). It is concluded that the inhibition of human liver microsomal CYP1A2 activity can be readily determined by using a charcoal-based radiometric method employing [O-ethyl 14C]phenacetin as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号