首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human immunodeficiency virus type 1 (HIV-1) mutant lacking the V1 and V2 variable loops in the gp120 exterior envelope glycoprotein replicated in Jurkat lymphocytes with only modest delays compared with the wild-type virus. Revertants that replicated with wild-type efficiency rapidly emerged and contained only a few amino acid changes in the envelope glycoproteins compared with the parent virus. Both the parent and revertant viruses exhibited increased sensitivity to neutralization by antibodies directed against the V3 loop or a CD4-induced epitope on gp120 but not by soluble CD4 or an antibody against the CD4 binding site. This result demonstrates the role of the gp120 V1 and V2 loops in protecting HIV-1 from some subsets of neutralizing antibodies.  相似文献   

2.
Infection by some human immunodeficiency virus type 1 (HIV-1) isolates is enhanced by the binding of subneutralizing concentrations of soluble receptor, soluble CD4 (sCD4), or monoclonal antibodies directed against the viral envelope glycoproteins. In this work, we studied the abilities of different antibodies to mediate activation of the envelope glycoproteins of a primary HIV-1 isolate, YU2, and identified the regions of gp120 envelope glycoprotein contributing to activation. Binding of antibodies to a variety of epitopes on gp120, including the CD4 binding site, the third variable (V3) loop, and CD4-induced epitopes, enhanced the entry of viruses containing YU2 envelope glycoproteins. Fab fragments of antibodies directed against either the CD4 binding site or V3 loop also activated YU2 virus infection. The activation phenotype was conferred on the envelope glycoproteins of a laboratory-adapted HIV-1 isolate (HXBc2) by replacing the gp120 V3 loop or V1/V2 and V3 loops with those of the YU2 virus. Infection by the YU2 virus in the presence of activating antibodies remained inhibitable by macrophage inhibitory protein 1beta, indicating dependence on the CCR5 coreceptor on the target cells. Thus, antibody enhancement of YU2 entry involves neither Fc receptor binding nor envelope glycoprotein cross-linking, is determined by the same variable loops that dictate enhancement by sCD4, and probably proceeds by a process fundamentally similar to the receptor-activated virus entry pathway.  相似文献   

3.
Oxidative stress and interleukins in seminal plasma during leukocytospermia   总被引:1,自引:0,他引:1  
Various roles for the viral receptor, CD4, have been proposed in facilitating human immunodeficiency virus type 1 (HIV-1) entry, including virion binding to the target cell and the induction of conformational changes in the viral envelope glycoproteins required for the membrane fusion reaction. Here, we compare the structural requirements in the CDR2-like loop of CD4 domain 1, the major contact site of the gp120 envelope glycoprotein, for gp120 binding and virus entry. For every CD4 mutant examined, the level of cell surface expression and the gp120 binding affinity were sufficient to explain the relative ability to function as a viral receptor. The decrease in relative infectibility associated with decreased gp120 binding affinity was more pronounced at lower cell surface CD4 concentrations. These results imply that both receptor density and affinity determine the efficiency of HIV-1 entry and that specific structures in the CD4 residues examined are probably not required for HIV-1 entry functions other than gp120 binding.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

5.
6.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells is a multistep process initiated by envelope protein gp120 binding to cell surface CD4. The conformational changes induced by this interaction likely favor a second-step interaction between gp120 and a coreceptor such as CXCR4 or CCR5. Here, we report a spontaneous and stable CD4-independent entry phenotype for the HIV-1 NDK isolate. This mutant strain, which emerged from a population of chronically infected CD4-positive CEM cells, can replicate in CD4-negative human cell lines. The presence of CXCR4 alone renders cells susceptible to infection by the mutant NDK, and infection can be blocked by the CXCR4 natural ligand SDF-1. Furthermore, we have correlated the CD4-independent phenotype with seven mutations in the C2 and C3 regions and the V3 loop. We propose that the mutant gp120 spontaneously acquires a conformation allowing it to interact directly with CXCR4. This virus provides us with a powerful tool to study directly gp120-CXCR4 interactions.  相似文献   

7.
Insertion of T-cell line-tropic V3 and V4 loops from the HXB2 strain into the macrophage-tropic YU-2 envelope resulted in a virus with delayed infectivity for HUT78 and Jurkat cells compared with HXB2. Sequence analysis of viral DNA derived from long-term cultures of Jurkat cells revealed a specific mutation that changed a highly conserved Asn residue in the V1 loop of Env to an Asp residue (N-136-->D). Introduction of this mutation into clones containing a T-cell line-tropic V3 loop, either with or without a T-cell line-tropic V4 loop, resulted in viruses that replicated to high levels in Jurkat cells and peripheral blood lymphocytes. The Env proteins from these constructs were expressed with the vaccinia virus/T7 hybrid system and were found to be translated, processed, and cleaved and to bind to soluble CD4 similar to the wild-type HXB2 and YU-2 Env proteins. Env-mediated fusion with HeLa T4+ cells, however, was regulated by both the altered V1 loop and T-cell line-tropic V3 loop. These results suggest that subsequent to the initial gp120-CD4 binding event, a functional interaction can occur between the altered V1 loop and T-cell line-tropic V3 loop that results in infection of Jurkat cells and peripheral blood lymphocytes.  相似文献   

8.
The outer membrane glycoprotein gp120 and the transmembrane glycoprotein gp41 are predominant targets of the humoral immune response to infection by human immunodeficiency virus type 1. The third hypervariable region (V3 loop) is the principal neutralizing domain and is the primary target of neutralizing antibodies directed against the envelope proteins of HIV-1. The V3 loop is also the major determinant for HIV-1 cell-specific tropism. To further characterize the humoral immune response directed against the gp120 envelope proteins, we expressed two prototypic gp120 envelope proteins (LAI/HXB2 and ADA) and chimeric gp120 envelope proteins in stable transfected Drosophila melanogaster Schneider 2 cells. Sera from four infected adults over the course of infection [McNearney et al. (1992) Proc. natn. Acad. Sci. U.S.A. 89, p. 10,242] were assayed for reactivity with the respective envelope proteins. Sera obtained at early stages preferentially recognized the gp120 envelope protein ADA, whereas in later stages of infection the sera showed diminished reactivity with both gp120 LAI/HXB2 and gp120 ADA. Chimeric envelope proteins revealed that the humoral response was directed primarily against the V3 loop of gp120 ADA. Furthermore, 22 sera from HIV-1 infected individuals in different stages of the disease were tested. Reactivity of sera with the gp120 envelope protein ADA was seven-fold higher than with the gp120 envelope protein LAI/HXB2. Our results suggest that the humoral immune response is preferentially elicited against the V3 loop of the prototypic macrophage-tropic gp120 envelope protein ADA.  相似文献   

9.
The binding of HIV-derived recombinant soluble (s)gp120 to the CD4(+)/CXCR4(+) A3.01 T cell line inhibits the binding of the CXCR4-specific monoclonal antibodies 12G5, which interacts with the second extracellular loop, and 6H8, which binds the NH2 terminus. We have used this as an assay to analyse the interaction of recombinant sgp120 from diverse viral origins with CXCR4. The strength of the interaction between sgp120 and CXCR4 correlated with sgp120 affinity for the CD4-CXCR4 complex, and the interaction of sgp120MN and sgp120IIIB with CXCR4 was highly dependent on the level of CD4 expressed on a variety of different T cell lines. sgp120 from X4, R5X4, and R5 viruses interacted with CXCR4, although the R5 sgp120-CXCR4 interactions were weaker than those of the other gp120s. The interaction of sgp120IIIB or sgp120MN with CXCR4 was inhibited by neutralizing monoclonal antibodies that prevent the sgp120-CD4 interaction but also by antibodies specific for the gp120 V2 and V3 loops, the CD4-induced epitope and the 2G12 epitope, which interfere weakly or not at all with CD4-sgp120 binding. The binding to A3.01 cells of wild-type sgp120HxB2, but not of sgp120 deleted in the COOH and NH2 termini, interfered with 12G5 binding in a dose-dependent manner. Further deletion of the V1 and V2 loops restored CXCR4 binding activity, but additional removal of the V3 loop eliminated the gp120-CXCR4 interaction, without decreasing the affinity between mutated sgp120 and CD4. Taken together, these results demonstrate that the interactions between sgp120 and CXCR4 are globally similar to those previously observed between sgp120 and CCR5, with some apparent differences in the strength of the sgp120-CXCR4 interactions and their dependence on CD4.  相似文献   

10.
To evaluate conserved structures of the surface gp120 subunit (SU) of the human immunodeficiency virus type 1 (HIV-1) envelope in gp120-cell interactions, we designed and produced an HIV-1 IIIB (HXB2R) gp120 carrying a deletion of amino acids E61 to S85. This sequence corresponds to a highly conserved predicted amphipathic alpha-helical structure located in the gp120 C1 region. The resultant soluble mutant with a deleted alpha helix 1 (gp120 DeltaalphaHX1) exhibited a strong interaction with CXCR4, although CD4 binding was undetectable. The former interaction was specific since it inhibited the binding of the anti-CXCR4 monoclonal antibody (12G5), as well as SDF1alpha, the natural ligand of CXCR4. Additionally, the mutant gp120 was able to bind to CXCR4(+)/CD4(-) cells but not to CXCR4(-)/CD4(-) cells. Although efficiently expressed on cell surface, HIV envelope harboring the deleted gp120 DeltaalphaHX1 associated with wild-type transmembrane gp41 was unable to induce cell-to-cell fusion with HeLa CD4(+) cells. Nevertheless, the soluble gp120 DeltaalphaHX1 efficiently inhibited a single round of HIV-1 LAI infection in HeLa P4 cells, with a 50% inhibitory concentration of 100 nM. Our data demonstrate that interaction with the CXCR4 coreceptor was maintained in a SUgp120 HIV envelope lacking alphaHX1. Moreover, in the absence of CD4 binding, the interaction of gp120 DeltaalphaHX1 with CXCR4 was sufficient to inhibit HIV-1 infection.  相似文献   

11.
We have developed an assay, using a biosensor matrix and surface plasmon resonance, that rapidly and reproducibly measures antibody reactivity to human immunodeficiency virus type 1 (HIV-1) gp120 in various structural conformations. In particular, antibodies displaying preferential reactivity to a CD4-binding competent ("native," rgp120) or CD4-binding incompetent ("reduced," rcmgp120) monomeric gp120 molecule were distinguished. This technique has advantages over conventional enzyme-linked immunosorbent assay (ELISA) methodology in which it is difficult to control the concentration of protein adsorbed to the ELISA wells and a significant disruption of protein structure occurs on adsorption. A population of gp120 molecules that lacked CD4 receptor binding capacity and bound antibodies specific for reduced gp120 was found in several native gp120 preparations. The relative amount of this CD4-binding incompetent population varied among the various preparations studied. This presence of CD4-binding incompetent molecules within various native recombinant gp120 preparations may have implications for HIV-1 envelope vaccine development. By measuring antibody-binding ratios, several monoclonal antibodies were identified, which, although elicited by immunization with various native gp120 preparations, bound specifically to reduced gp120. The ability to screen antibody specificity against HIV-1 envelope proteins with different conformations will assist in determining the quality of antibodies induced by various HIV-1 envelope vaccine candidates.  相似文献   

12.
We have constructed a mutated infectious HIV variant lacking the signals for addition of three N-linked glycans situated in the V4, C4 and V5 regions of HIV gp120. When comparing mutated virus with wildtype virus we found essentially no differences in the phenotypic characteristics of the two viruses except for the expected electrophoretic mobility shift of radioimmuno-precipitated mutated gp120, resulting from the missing N-glycans. Thus, the infectivity titer and the capacity to induce syncytia were similar for the two viruses. The sensitivity of mutant and wildtype virus to a number of neutralizing agents was determined. As expected, the mutant virus was significantly less sensitive to neutralization by Con A, with affinity for the N-glycans eliminated. We found, however, that antibodies to the V3 loop and sCD4 neutralized wild-type virus as efficiently as mutant virus, whereas 2G12, a monoclonal antibody, binding to a discontinuous neutralization epitope, and GP13, binding to the CD4-binding domain, neutralized wildtype virus better than mutant virus. Altogether the data suggest that the three conserved N-linked glycans, despite their location in immediate association with the CD4-binding domain, which is an important neutralization epitope, are not essential for virus replication in cell culture and they are not engaged in shielding neutralization epitopes of gp120 from neutralizing antibodies. However, the glycans evidently influence the three-dimensional conformation of gp120, since their presence increases the availability of the neutralization epitope of 2G12.  相似文献   

13.
Synthetic multibranched peptides derived from the V3 domain of human immunodeficiency virus type 1 (HIV-1) gp120 inhibit HIV-1 entry into CD4+ and CD4- cells by two distinct mechanisms: competitive inhibition of HIV-1 binding to CD4-/GalCer+ colon cells and postbinding inhibition of HIV-1 fusion with CD4+ lymphocytes. In the present study, we have characterized the cellular binding sites for the V3 peptide SPC3, which possesses eight V3 consensus motifs GPGRAF radially branched on a neutral polyLys core matrix. These binding sites are glycosphingolipids that share a common structural determinant, i.e., a terminal galactose residue with a free hydroxyl group in position 4: GalCer/sulfatide on CD4-/GalCer+ colon cells; LacCer and its sialosyl derivatives GM3 and GD3 on CD4+ human lymphocytes. These data suggest that the V3 peptide binds to the GalCer/sulfatide receptor for HIV-1 gp120 on HT-29 cells and thus acts as a competitive inhibitor of virus binding to these CD4- cells, in full agreement with previously published virological data. In contrast, SPC3 does not bind to the CD4 receptor, in agreement with the data showing that the peptide inhibits HIV-1 infection of CD4+ cells by acting at a postattachment step. The binding of SPC3 to LacCer, GM3, and GD3, expressed by CD4+ lymphocytes, suggests a role for these glycosphingolipids in the fusion process between the viral envelope and the plasma membrane of CD4+ cells. Since the multivalent peptide can theoretically bind to several of these glycosphingolipids, we hypothesize that the resulting cross-linking of membrane components may affect the fluidity of the plasma membrane and/or membrane curvature, altering the virus-cell fusion mechanism.  相似文献   

14.
A series of amino acid substitutions were carried out in the V3 loop of SIV gp120 to investigate their effects on binding of the envelope to CD4 and neutralizing monoclonal antibodies. Alanine replacement of two adjacent arginines at the amino terminus of V3 resulted in a molecule that bound neither sCD4 nor conformation-dependent neutralizing monoclonal KK5 and KK9. A similar substitution of two amino acids, lysine and arginine, in the carboxyl half of V3 disrupted binding to KK9 without affecting CD4 binding. Removal of V3 from the envelope gave rise to a molecule that was not secreted. These data suggest a close linkage between V3 and CD4 binding domains of gp120, although neutralizing antibodies directed to V3 do not block binding of gp120 to CD4. We propose that differences in the modes of interactions of the V3 disulfide loops with CD4 in SIV and HIV may be responsible for the observed different neutralizing properties of the two V3 loops.  相似文献   

15.
Although infection by primary HIV type 1 (HIV-1) isolates normally requires the functional interaction of the viral envelope protein with both CD4 and the CCR-5 coreceptor, a subset of such isolates also are able to use the distinct CCR-3 receptor. By analyzing the ability of a series of wild-type and chimeric HIV-1 envelope proteins to mediate CCR-3-dependent infection, we have determined that CCR-3 tropism maps to the V1 and V2 variable region of envelope. Although substitution of the V1/V2 region of a CCR-3 tropic envelope into the context of a CCR-5 tropic envelope is both necessary and sufficient to confer CCR-3 tropism, this same substitution has no phenotypic effect when inserted into a CXCR-4 tropic HIV-1 envelope context. However, this latter chimera acquires both CCR-3 and CCR-5 tropism when a CCR-5 tropic V3 loop sequence also is introduced. These data demonstrate that the V1/2 region of envelope can, like the V3 loop region, encode a particular coreceptor requirement and suggest that a functional envelope:CCR-3 interaction may depend on the cooperative interaction of CCR-3 with both the V1/V2 and the V3 region of envelope.  相似文献   

16.
The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.  相似文献   

17.
CD4-expressing T cells in lymphoid organs are infected by the primary strains of HIV and represent one of the main sources of virus replication. Gene therapy strategies are being developed that allow the transfer of exogenous genes into CD4(+) T lymphocytes whose expression might prevent viral infection or replication. Insights into the mechanisms that govern virus entry into the target cells can be exploited for this purpose. Major determinants of the tropism of infection are the CD4 molecules on the surface of the target cells and the viral envelope glycoproteins at the viral surface. The best characterized and most widely used gene transfer vectors are derived from Moloney murine leukemia virus (MuLV). To generate MuLV-based retroviral gene transfer vector particles with specificity of infection for CD4-expressing cells, we attempted to produce viral pseudotypes, consisting of MuLV capsid particles and the surface (SU) and transmembrane (TM) envelope glycoproteins gp120-SU and gp41-TM of HIV type 1 (HIV-1). Full-length HIV-1 envelope glycoproteins were expressed in the MuLV env-negative packaging cell line TELCeB6. Formation of infectious pseudotype particles was not observed. However, using a truncated variant of the transmembrane protein, lacking sequences of the carboxyl-terminal cytoplasmic domain, pseudotyped retroviruses were generated. Removal of the carboxyl-terminal domain of the transmembrane envelope protein of HIV-1 was therefore absolutely required for the generation of the viral pseudotypes. The virus was shown to infect CD4-expressing cell lines, and infection was prevented by antisera specific for gp120-SU. This retroviral vector should prove useful for the study of HIV infection events mediated by HIV-1 envelope glycoproteins, and for the targeting of CD4(+) cells during gene therapy of AIDS.  相似文献   

18.
Using comparative molecular field analysis (CoMFA), a 3D-QSAR model was developed for 21 porphyrin derivatives which have anti-HIV-1 activity and bind to the V3 loop of the envelope glycoprotein gp120 of the human immunodeficiency virus type 1. A significant PLS cross-validated r2cv (0.590) was obtained, indicating that the model could be used as a predictive tool for further design of porphyrin analogs. The model revealed at least three important sites for favorable electrostatic interactions and indicated favorable and unfavorable steric interaction sites. It was found that the occurrence of at least three positively charged and several hydrophobic amino acid residues is highly conserved at fixed positions of gp120 V3 loop sequences. This may support the validity of the proposed model and the hypothesis that porphyrins containing anionic and hydrophobic groups may interact with some of the highly conserved positively charged and hydrophobic sites, respectively, of the V3 loop. These interactions may induce conformational changes in the gp120 envelope glycoprotein leading to inhibition of virus entry into cells and of syncytium formation (cell-to-cell fusion) and thus to inhibition of virus replication.  相似文献   

19.
This work extends our previous finding that lymphocyte treatment with gp120IIIB specifically induces CD4 association with several surface molecules to other molecules and to three other gp120s from different HIV-1 strains. The ability to induce this association was displayed by the four gp120s employed, i.e. gp120IIIB, gp120SF2, gp120MN and gp120(451), and the association patterns were different, as shown by both co-capping and immunoprecipitation. Co-capping showed that all four gp120s significantly potentiated CD4 association with CD3, CD45RA, CD45RB, CD38, CD26, CD59 and class I MHC molecules. By contrast, CD4 association with CD95 was induced only by gp120(451) and gp120MN; that with CD11a only by gp120SF2 and gp120MN; and that with CD27 and CD45RO only by gp120MN and gp120(451) respectively. All gp120s induced significant CD4 association with CD49d, but gp120SF2 displayed a significantly weaker effect than gp120IIIB. Induction of association was not mediated by inside-out signaling via the CD4-associated tyrosine kinase p58lck, since it was not inhibited by the tyrosine kinase inhibitors herbymicin and genistein, nor by CD45 bridging between CD4 and the associating molecule, since similar patterns of association were detected IN cells expressing different CD45 isoform patterns. Moreover, it was not mediated by chemokine receptors interacting with the gp120 V3 loop, since RANTES did not alter the gp120-induced CD4 association pattern. By contrast, the observation that gp120s from four HIV-1 strains induce different CD4 association patterns suggests that gp120 directly interacts with the associating molecules, possibly via their hypervariable regions.  相似文献   

20.
DESIGN: Envelope protein-specific antiviral peptides, called mucibodies, that can specifically recognize and bind to the surface unit protein gp120 of HIV-1 were designed. The initial mucibody binding target was the V3 loop of HIV-1 gp120. Here, the gp120-CD4 binding domain was chosen as the site of mucibody binding. The CD4 binding domain of gp120 is known to be a conformational epitope and is involved in the earliest events of viral entry into many cells. METHODS: The design of the mucibody antivirals was based on previous observations that antibody complementarity determining regions (CDR) are generally similar to the repeating loops or knob structures found in the 20-residue tandem repeat domain of human mucin MUC1. The heavy chain CDR3 from the bacteriophage display antibody b12 was used to construct two mucibodies, b12-CDR1 and b12-26. RESULTS: Peptides corresponding to three tandem repeats were shown to bind directly to the CD4 binding domain of HIV-1 gp120 in a solid-phase enzyme-linked immunosorbent assay. These mucibody peptides also disrupted the gp120-CD4 interaction in a solution-phase inhibition assay. Finally, mucibodies neutralized primary and laboratory macrophage-tropic isolates of HIV-1. CONCLUSIONS: There is a potential for medical use of these peptides as topical vaginal microbicides in preventing HIV-1 transmission during sexual contact. These results also suggest that multivalent, non-immunogenic binding proteins of virtually any specificity could be constructed for use in therapeutic applications involving infectious diseases and immune system dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号