首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Drying Technology》2013,31(6):957-978
Abstract

A computational fluid dynamic study was carried out to investigate airflow pattern, temperature, and humidity profile at different levels in the drying chamber. Good agreement was obtained with published experimental data. The effects of operating pressure, heat loss from the chamber wall and inlet air conditions on the gas flow pattern, droplet trajectories, and overall dryer performance also were investigated. Results are presented and discussed in terms of the gas velocity, temperature, and humidity profiles within the chambers. The volumetric evaporation values, heat transfer intensity, and thermal energy consumption per unit evaporation rate were computed and compared for drying of a 42.5% solids solution in a spray chamber 2.215 m in diameter with a cylindrical top section 2.005 m high and a bottom cone 1.725 m high. Wall regions subject to formation of undesirable deposits are also identified.  相似文献   

2.
The dielectric material assisted microwave freeze-drying was investigated theoretically in this study. A coupled heat and mass transfer model was developed considering distributions of the temperature, ice saturation and vapor mass concentration inside the material being dried, as well as the vapor sublimation-desublimation in the frozen region. The effects of temperature and saturation on the effective conductivities were analyzed based on heat and mass flux equations. The model was solved numerically by the variable time-step finite-deference technique with two movable boundaries in an initially unsaturated porous sphere frozen from an aqueous solution of mannitol. The sintered silicon carbide (SiC) was selected as the dielectric material. The results show that dielectric material can significantly enhance microwave freeze-drying process. For case of the dielectric field strength, E = 4000 V/m under typical operating conditions, the drying time is 2081 s, 30.1% shorter and 47.2% longer, respectively, than those for E = 2000V/m and E = 6000 V/m. The heat and mass transfer mechanisms during the drying process were discussed.  相似文献   

3.
Spray drying of a concentrated common salt (NaCl) solution carried out in the intense oscillating high-temperature turbulent flow field generated in the tailpipe of a pulse combustor was simulated. Simulation of such transport process problems is especially crucial since the environmental conditions are too hostile for detailed and reliable measurements. The momentum, heat, and mass transfer processes between the gas and droplet phases during drying were simulated using a computational fluid dynamic solver. The simulated profiles of flow field, temperature, and humidity of gaseous phase, and particle trajectories in a drying chamber are presented and discussed. The effects of gas temperature, pulse frequency and amplitude, and gas mass flow rate on the transient flow patterns, droplet trajectories, and overall dryer performance were investigated. Different turbulence models were also tested. Simulation results show that the flow field and droplet drying conditions vary widely during a single pulsating period. Very short drying times and very high drying rate characterize pulse combustion spray drying. Thus, pulse combustion drying can be applied to drying of fine droplets of highly heat-sensitive materials although the jet temperature initially is extremely high.  相似文献   

4.
In the present study drying of fine crystalline solid was carried out in a non-insulated jacketed screw conveyor dryer SCD of 3 m length and 0.072 m screw diameter. It is nitrogen-swept to carry off the evaporated moisture. Dryer performance was evaluated in terms of the final moisture content, heat-transfer coefficient, thermal efficiency and power consumption. From the experimental results it was observed that drying under low pressure gives 92% moisture removal compared to 30-40% using low flow rates of nitrogen. The initial moisture content was in the range of 5 to 6%. Over the parameter range studied, the overall heat transfer coefficient was found to be in the range of 46-102 W/m2K. The average rise in the temperature of the product was 40 to 50°C. Thermal efficiency (based on sensible and latent heat) of the dryer obtained was found to be in the range of 25-62%, typical values obtained in falling rate drying period. Power consumption per metric ton of dried material was found to be a strong function of screw speed and material feed rate, material properties, and drive efficiency.  相似文献   

5.
Spray drying of a concentrated common salt (NaCl) solution carried out in the intense oscillating high-temperature turbulent flow field generated in the tailpipe of a pulse combustor was simulated. Simulation of such transport process problems is especially crucial since the environmental conditions are too hostile for detailed and reliable measurements. The momentum, heat, and mass transfer processes between the gas and droplet phases during drying were simulated using a computational fluid dynamic solver. The simulated profiles of flow field, temperature, and humidity of gaseous phase, and particle trajectories in a drying chamber are presented and discussed. The effects of gas temperature, pulse frequency and amplitude, and gas mass flow rate on the transient flow patterns, droplet trajectories, and overall dryer performance were investigated. Different turbulence models were also tested. Simulation results show that the flow field and droplet drying conditions vary widely during a single pulsating period. Very short drying times and very high drying rate characterize pulse combustion spray drying. Thus, pulse combustion drying can be applied to drying of fine droplets of highly heat-sensitive materials although the jet temperature initially is extremely high.  相似文献   

6.
A conveyor-belt dryer for picrite has been modeled mathematically in this work. The necessary parameters for the system of equations were obtained from regression analysis of thin-layer drying data. The convective drying experiments were carried out at temperatures of 40, 60, 80, and 100°C and air velocities of 0.5 and 1.5 m/sec. To analyze the drying behavior, the drying curves were fitted to different semi-theoretical drying kinetics models such as those of Lewis, Page, Henderson and Pabis, Wang and Singh, and the decay models. The decay function (for second order reactions) gives better results and describes the thin layer drying curves quite well. The effective diffusivity was also determined from the integrated Fick's second law equation and correlated with temperature using an Arrhenius-type model. External heat and mass transfer coefficients were refitted to the empirical correlation using dimensionless numbers (Jh, JD = m · Ren) and their new coefficients were optimized as a function of temperature. The internal mass transfer coefficient was also correlated as a function of moisture content, air temperature, and velocity.  相似文献   

7.
A model is presented for drying of a single porous particle with superheated steam and humid air. Experimental data for spherical porous ceramic particle reported in the literature were used for the validation of the model. An inversion temperature at which the evaporation rates within superheated steam and humid air are equal was predicted. The effect of thermophysical properties of the particle (permeability 10-14 - 10-17 m2, diameter 3 × 10-3 - 10 × 10-3 m) and operating variables (gas mass flux 0.26 - 0.78 kg m-2 s-1, drying agent temperature 120-200°C) is tested. The inversion temperature is shown to be affected by the thermophysical properties of the porous particle and of the drying agent.  相似文献   

8.
SIMULATION OF FLUIDIZED-BED DRYING OF CARROT WITH MICROWAVE HEATING   总被引:1,自引:0,他引:1  
A mathematical model of coupled heat and mass transfer was applied to batch fluidized-bed drying with microwave heating of a heat sensitive material—carrot. Four kinds of microwave heating with intermittent variation were examined. The numerical results show that different microwave heating patterns can affect the fluidized bed drying significantly. Changing the microwave input pattern from uniform to intermittent mode can prevent material from overheating under the same power density. Supplying more microwave energy at the beginning of drying can increase the utilization of microwave energy while keeping temperature low within the particle. For a particle diameter of 4 mm, fluidization velocity of 2 m/s, inlet airflow temperature of 70°C and the bed area factor of 80, the drying time are 750 and 1000 s, respectively, for the two good operating conditions with on/off periods of 125/375 s and 375/375 s. The cumulative microwave energy absorbed by particles at the end of drying is 1415 and 2300 kJ/kg (dry basis), respectively.  相似文献   

9.
A two-dimensional mathematical model developed for vacuum-contact drying of wood was adapted to simulate superheated steam vacuum drying. The moisture and heat equations are based on the water potential concept whereas the pressure equation is formulated considering unsteady-state mass conservation of dry air. A drying test conducted on sugar maple sapwood in a laboratory vacuum kiln was used to infer the convective mass and heat transfer coefficients through a curve fitting technique. The average air velocity was 2.5 m s-1 and the dry-bulb temperature varied between 60 and 66°C. The ambient pressure varied from 15 to 11 kPa. Simulation results indicate that heat and mass transfer coefficients are moisture content dependent. The simulated drying curve based on transfer coefficients calculated from boundary layer theory poorly fits experimental results. The functional relation for the relative permeability of wood to air is a key parameter in predicting the pressure evolution in wood in the course of drying. In the case of small vacuum kilns, radiant heat can contribute substantially to the total heat transfer to the evaporative surface at the early stages of drying. As for conventional drying, the air velocity could be reduced at the latter stage of drying with little or no change to the drying rate.  相似文献   

10.
Spray drying of NaCl solution was carried out under an intense oscillating flow field generated by a pulse combustor. A pulse combustion spray drying system was constructed. An optical analyzer was used to measure the particle diameter distribution of droplets atomized by a pulsating flow. The momentum, heat and mass transfer in both gaseous and particulate phases during spray drying inside the drying chamber were simulated using the computational fluid dynamics method. The simulated profiles of flow field, temperature and humidity of the gaseous phase, as well as the particulate phase, in the drying chamber were presented. The simulation showed changes of the flow field and particle trajectories in the drying chamber during one pulsating period. A large-scale vortex was observed in the upper part of the drying chamber because of the unstable state of flow field and particle trajectories. Short drying time and large evaporation rate are characteristics of pulsating spray drying. The influence of gas stream pulsation frequency on the drying process is also analyzed.  相似文献   

11.
The drying and hydrodynamic characteristics of iron ore particles in a vertical pneumatic conveying dryer (0.078 m ID × 6.0 m high) have been determined. The pressure drop decreases along the height at the acceleration region, while it remains constant irrespective of the height in the fully developed region. The degree of particle drying in the dilute pneumatic region increases with increasing superficial inlet gas velocity at constant inlet gas temperature and solid injection rate. However, it decreases with increasing solid injection rates at identical superficial inlet gas velocity and inlet gas temperature. The degree of particle drying increases from 48.6 to 82.5% as the inlet gas temperature increases from 100 to 400 °C.  相似文献   

12.
Drying of lightly salted sardine (Sardinella aurita) was accomplished using three air temperatures (35°C, 40°C, 50°C) and three air velocities (0.5 m/s, 1.5 m/s, 2 m/s); the effects of drying conditions on drying kinetics were studied. As for all biological products, air temperature is the main factor influencing the drying kinetics. However, over a given temperature which seems to correspond to protein modification (50°C), and at a high air flow rate (2 m/s and 2.5 m/s) a crust formation on the surface of the fish, due to the combined effect of heat and salt was observed. This phenomenon inhibited the drying rate. From the drying curves, two falling rate periods were observed. The dimensionless drying rate versus a dimensionless moisture content data were regressed by the Marquardt Levenberg non-linear optimization method to obtain an empirical equation describing the salted sardine characteristic drying curve.  相似文献   

13.
14.
Heat transfer coefficients have been measured from heat transfer tube bundles simulating heat exchanger configurations and surrounding two-phase and three-phase dispersions in a slurry bubble column. The tube bundles are comprised of a single tube, and five-, seven-, and thirty-seven tubes of 19 mm outer diameter. The Pyrex glass bubble column is 0.305 m internal diameter and 3.30 m tall and is heated electrically by internal heaters to temperatures in the range 298 to 353 K. Air, water and glass beads are used as gas, liquid and solid phases respectively. Heat transfer coefficients are measured for air-water, and air-water-glass bead systems as a function of air velocity up to about 0.3 m/s, and solids concentration up to about 30 weight percent in slurries of glass beads of average diameters 125, 168 and 212 μm at temperatures of 298, 323, 343 and 353 K. The nondimensional correlation available for heat transfer coefficient is also examined and modifications in its form are proposed on the basis of experimental data. Heat transfer coefficient values are compared with the predictions based on correlations due to Deckwer et al., Suh and Deckwer, Kim et al., and Pandit and Joshi. These correlations are inadequate and hence a semitheoretical correlation is proposed which synthesizes the data successfully. The influence of tube bundle size on heat transfer coefficient is discussed  相似文献   

15.
The paper presents a theoretical and experimental analysis of a pulse combustion spray drying system. Measurements of the velocity flow field inside the drying chamber and extensive tests on drying and water evaporation were carried out for various feed rates and operating parameters of the pulse combustor. Each test included the analysis of temperature distribution in the dryer, evaporation level and sprayed material structure. LDA and PDA techniques were employed to determine the character of pulsating flow in the chamber, amount of water evaporated and to perform a profound analysis of spray structure. Experimental results show an intensive and efficient drying process. An attempt was made to perform theoretical predictions of velocity and temperature distribution in the drying chamber. The CFD technique was used to calculate time-dependent flow in the chamber. Results show vanishing velocity, pressure and temperature oscillations along the length of the drying chamber. Temperature oscillations decline faster than oscillations of pressure and velocity. Satisfactory agreement between calculations and experimental results was found in certain regions of the drying chamber. Discrepancies might be caused by simplification of the system geometry and flow pattern which were assumed to perform calculations in reasonable time.  相似文献   

16.
In the present study, an innovative method for an accurate simulation and design of a chamber dryer used in the brick/ceramic industry has been proposed. A thorough investigation of currently used dryers is conducted and optimization criteria are detected and discussed. Three-dimensional modeling of the chamber dryer has been performed. In the second step, from the result of 3D modeling, the critical values for heat transfer coefficient are obtained. The governing equations for a two-dimensional brick as a porous solid are derived by combining conservation laws and Fourier's law for heat conduction and Darcy's and Fick's laws for mass diffusion in porous material. The set of partial differential equations governing heat and mass transport in a single brick together with the respective temperature and humidity boundary conditions have been solved numerically based on finite difference method. Finally, an efficient scheme for the air circulation devices, inlet air temperature and humidity, burner characteristics, flow rates, and drying process control have been proposed for a typical industrial-scale brick dryer.  相似文献   

17.
The drying of porous materials immersed in the fluidized bed under reduced pressure was performed, and the results were compared with those of hot air drying. The pressure in drying chamber was changed (5.0-101.3 kPa) and the effect of it was examined.

The temperature of the sample center becomes lower as the pressure in drying chamber decreases, and the temperature in fluidized-bed drying is higher than that in hot air drying at the same pressure. The effect of pressure in drying chamber on the sample temperature is significant for different temperatures of drying gas.  相似文献   

18.
A planar heat pipe (;rectangular cross section) was designed, built and tested using flexible electrical rubber heaters to provide the necessary heat. The device was constructed from 0.043” (0.1092 cm) copper sheet, with three layers of 100-mesh copper screen as a capillary wick. The dimensions of the planar heat pipe were 6 inches ( 15.24 cm) by 12 inches (30.48 cm) by 3/4 inches (1.905 cm). Water was used as the working fluid. Steady state, and in once case, transient responses, were investigated. External axial temperature profiles for different applied powers and operating temperatures were measured. Operation of the device was stable and repeatable within a temperature range of 30° to 95°C; no temperature or pressure fluctuations were noted.

The optimum amount of working fluid for a typical situation was obtained experimentally. Effects of air and amount of working fluid inside the planar heat pipe were investigated. The optimum amount of working fluid which was obtained experimentally was used throughout the remaining tests in this research. Effects of gravity, a wide range of operating temperature, Reynolds number at constant input power, and Reynolds number at constant operating temperature were investigated. The maximum heat transfer rate of the planar heat pipe was obtained experimentally and compared to it is theoretical value. Good agreement was obtained between the two values.  相似文献   

19.
A simple experimental approach was developed to measure the gas phase volumetric heat and mass transfer coefficients in a bubble column and a slurry bubble column employing a single gas nozzle. The experimental technique was based on a transfer model that simulates humidification and direct contact evaporation models in the case of a gas bubble rising in a liquid of uniform temperature. The temperature and relative humidity of the inlet and outlet gas in the column are the only measurements required in this technique. Experiments were carried out in a 0.15 m inner diameter column using water as the liquid phase, air as the gas phase, and cation resins of 0.1 mm diameter and a specific gravity of 1.2, as the solid phase. The results showed that, when using solid concentrations in the range of 7–10 wt %, both the volumetric gas‐phase heat and mass transfer coefficients increased with an increase in the gas superficial velocity and were further enhanced by increasing the solid load after a certain minimum superficial velocity had been reached in the column (0.044 m/s in the system used). Increasing the solid load beyond 10 wt %, did not contribute to a further increase in these coefficients. Furthermore, the gas holdup in the column increased with the superficial gas velocity and was further enhanced when the solid‐phase load was in the range of 7–10 wt %. These observations agree well with previously reported findings by other investigators.  相似文献   

20.
This article presents the findings of a numerical simulation model of the spray-drying process in a two-stage horizontal chamber design with the aid of a computational fluid dynamic (CFD) model. The model describes heat, mass, and momentum transfer between two phases; namely, a continuous gas phase and a discrete phase of droplets (or particles), using the finite volume method. In this study, a new two-dimensional horizontal spray dryer (HSD) geometry is considered as a pilot study into the spray-drying process in this novel chamber configuration. The tested model is able to predict some important features of the spray-drying process, such as air flow patterns indicating recirculation zones and particle trajectory plots. Some performance parameters for spray drying, such as the rate of evaporation, average volumetric heat and mass transfer rates, etc., are calculated and discussed. This two-stage drying process especially applicable for the horizontal spray dryer (HSD) model is investigated and modeled. The bottom wall of the HSD is assumed to be a shallow fluid bed used for second stage drying. In this article, the fluid bed drying conditions are changed and compared. The drying within the fluid bed itself is not modeled in this study, however. It is shown that the particle residence time is higher when the fluid bed is included. The drying performance of this two-stage horizontal spray dryer is expected to be better than that of a single-stage dryer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号