首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A hierarchical gain scheduling (HGS) approach is proposed to model the nonlinear dynamics of NO x emissions of a utility boiler. At the lower level of HGS, a nonlinear static model is used to schedule the static parameters of local linear dynamic models (LDMs), such as static gains and static operating conditions. According to upper level scheduling variables, a multi-model method is used to calculate the predictive output based on lower-level LDMs. Both static and dynamic experiments are carried out at a 360 MW pulverized coal-fired boiler. Based on these data, a nonlinear static model using artificial neural network (ANN) and a series of linear dynamic models are obtained. Then, the performance of the HGS model is compared to the common multi-model in predicting NO x emissions, and experimental results indicate that the proposed HGS model is much better than the multi-model in predicting NO x emissions in the dynamic process. This paper was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 25–28, 2008.  相似文献   

2.
Trimerization of isobutene to produce isobutene trimers has been investigated over WOx/ZrO2 catalysts that were obtained by wet-impregnation and successive calcination at high temperatures. Very stable isobutene conversion and high selectivity for trimers are attained over a WOx/ZrO2 catalyst obtained by calcination at 700 °C. From the XRD study it can be understood that tetragonal ZrO2 is beneficial for stable performance; however, monoclinic ZrO2 is not good for trimerization. Nitrogen adsorption and FTIR experiments suggest that amorphous WOx/ZrO2 is inefficient catalyst even though it has high surface area and high concentration of acid sites. The observed performance with the increased selectivity and stable conversion demonstrates that a WOx/ZrO2 having tetragonal zirconia, even with decreased porosity and acid sites, is one of the best catalysts to exhibit stable and high conversion, high selectivity for trimers and facile regeneration.  相似文献   

3.
The effects of regeneration-phase CO and/or H2, and their amounts as a function of temperature on the trapping and reduction of NOX over a model and a commercial NOX storage/reduction catalyst have been evaluated. Overall, for both catalysts, their NOX removal performance improved with each incremental increase in H2 concentration. For the commercial sample, using CO at 200 °C, beyond a small amount added, was found to decrease performance. The addition of H2 to the CO-containing mixtures resulted in improved performance at 200 °C, but the presence of the CO still resulted in decreased performance in comparison to activity when just H2 was used. With the model sample, the presence of CO resulted in very poor performance at 200 °C, even with H2. The data suggest that CO poisons Pt sites, including Pt-catalyzed nitrate decomposition. At 300 °C, H2, CO, and mixtures of the two were comparable for trapping and reduction of NOX, although with the model sample H2 did prove consistently better. With the commercial sample, H2 and CO were again comparable at 500 °C, but mixtures of the two led to slightly improved performance, while yet again H2 and H2-containing mixtures proved better than CO when testing the model sample. NH3 formation was observed under most test conditions used. At 200 °C, NH3 formation increased with each increase in H2, while at 500 °C, the amount of NH3 formed when using the mixtures was higher than that when using either H2 or CO. This coincides with the improved performance observed with the mixtures when testing the commercial.  相似文献   

4.
The effects of CO2 and H2O on the NO x storage and reduction characteristics of a Pt/Ba/Al2O3 catalyst were investigated. The presence of CO2 and H2O, individually or together, affect the performance and therefore the chemistry that occurs at the catalyst surface. The effects of CO2 were observed in both the trapping and reduction phases of the experiments, whereas the effect of H2O seems limited to the trapping phase. The data also indicate that multiple types of sorption sites (or mechanisms for sorption) exist on the catalyst. One mechanism is characterized by a rapid and complete uptake of NO x . A second mechanism is characterized by a slower rate of NO x uptake, but this mechanism is active for a longer time period. As the temperature is increased, the effect of H2O decreases compared to that of CO2. At the highest temperatures examined, the elimination of H2O when CO2 is present did not affect the performance.  相似文献   

5.
Extensive homogeneous gasphase reactions were observed when decane was used as the hydrocarbon reductant for the selective reduction of NO x . The catalytic performance of a SnO2/CoO x /Al2O3 catalyst was found to be strongly dependent on the extent of the homogeneous reaction in the precatalytic volume. The effect of the homogeneous reaction on the catalytic performance also depended on whether SO2 was present in the feed. By filling the precatalytic volume with 25–35 mesh irregularly shaped quartz chips, gasphase reaction was suppressed significantly. This methodology was used to evaluate the inherent catalytic performance of SnO2/CoO x /Al2O3 and SnO2/Al2O3 catalysts with decane as a reductant. It was found that in the absence of SO2, SnO2/Al2O3 was a better catalyst than SnO2/CoO x /Al2O3, but in the presence of 30 ppm of SO2 the latter was a far better catalyst.  相似文献   

6.
Mixed solid solution spinels impregnated with cerium, Ce/MgO·MgAl2-xMxO4 (M=Fe, V, Cr, x≤0.4), were studied for controlling the SOx emission from the fluid catalytic cracking (FCC) regenerator. An insufficient sulfur release problem inherent to the earlier De---SOx catalyst, Ce/MgO·MgAl2O4, was effectively overcome by incorporating a transition metal into the spinel structure. Studies of the SOx pick-up, temperature profile for the sulfate reduction, the thermal analysis, and the De---SOx cycle test in the batch as well as the automated continuous reactor are discussed to define the role of a transition metal in the mixed spinels for the De---SOx performance. These advanced De---SOx catalysts have led to a commercial success for the simultaneous control of SOx and NOx emissions from the FCC regenerator.  相似文献   

7.
Cr-doped Li9V3−xCrx(P2O7)3(PO4)2 (x = 0.0–0.5) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li9V3−xCrx(P2O7)3(PO4)2 (x = 0.0–0.5) with trigonal structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content. Li9V2.8Cr0.2(P2O7)3(PO4)2 compound presents the good electrochemical rate and cyclic ability. The enhancement of rate and cyclic capability may be attributed to the optimizing particle size, morphologies, and structural stability during the proper amount of Cr-doping (x = 0.2) in V sites.  相似文献   

8.
The NO x storage-reduction catalyst (NSR catalyst) is poisoned by SO2 caused by fuel sulfur, thus its activity is reduced. In order to improve the NSR catalyst, the sulfur poisoning phenomenon has been analyzed. Based on this result, we developed TiO2 and Rh/ZrO2 to promote the sulfur desorption. The developed catalyst has made remarkable progress in its sulfur tolerance, about 50% improvement in NO x purification performance compared with the conventional one.  相似文献   

9.
Pt on ceria (CeOx) particles supported on carbon black (CB) were synthesized using the combined process of hot precipitation and impregnation methods. During 30 cycles of cyclic voltammetry pre-treatment in the potential ranging from −0.2 to 1.3 V (V vs. Ag/AgCl), it was observed that a small amount of CeOx, which consisted of the interface region between Pt and CeOx, remained on Pt particles. Other free CeOx particles were dissolved into H2SO4 aqueous solution. To develop the Pt-CeOx/CB catalyst, the surface chemical states, the net chemical composition, morphology and electrochemical behavior in H2SO4 aqueous solution were characterized. Our microanalysis and electrochemical analysis indicate that the active CeO2 with high specific surface area provides the continuous amorphous cerium oxide (Ce3+, Ce4+) layer with pores on the surface of Pt particles. It is concluded that the amorphous cerium oxide layer on Pt inhibits the oxidation of Pt surface and contributes to enhancement of the activity on Pt cathode. The single cell performance was also improved using the Pt-CeOx/CB cathode. Based on all data, it is expected that the design based on characterization of the interface between Pt and small amount of amorphous cerium oxide layer could help in preparation of more active Pt catalyst.  相似文献   

10.
In this work, oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst is studied in a two-zone fluidized-bed reactor (TZFBR) and its performance is compared with a fluidized-bed reactor (FBR). Diluted oxygen in argon was introduced into the bottom of the TZFBR through a quartz ferrite and methane was entered at higher positions along the fluidized bed. The catalyst circulated between the oxygen-rich and methane-rich zones in the TZFBR reactor. The effects of the main operating variables including bed temperature, the methane/oxygen ratio (Rmo), and the height at which methane was introduced into the reactor (Hm) were investigated. It is found that under some operating conditions the TZFBR gives a higher C2 selectivity than that obtained in the FBR reactor. Reaction of methane with lattice oxygen of the Mn/Na2WO4/SiO2 redox catalyst in the methane-rich zone may have led to the higher selectivity.  相似文献   

11.
12.
Powders of spinel Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were successfully synthesized by solid-state method. The structure and properties of Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were examined by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electronic microscope (SEM), galvanostatic charge–discharge test and cyclic voltammetry (CV). XRD shows that the V5+ can partially replace Ti4+ and Li+ in the spinel and the doping V5+ ion does almost not affect the lattice parameter of Li4Ti5O12. Raman spectra indicate that the Raman bands corresponding to the Li–O and Ti–O vibrations have a blue shift due to the doping vanadium ions, respectively. SEM exhibits that Li4Ti5−xVxO12 (0.05 ≤ x ≤ 0.25) samples have a relative uniform morphology with narrow size distribution. Charge–discharge test reveals that Li4Ti4.95V0.05O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 1.0 and 2.0 V; Li4Ti4.9V0.1O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 0.0 and 2.0 V or between 0.5 and 2.0 V. This excellent cycling capability is mainly due to the doping vanadium. CV reveals that electrolyte starts to decompose irreversibly below 1.0 V, and SEI film of Li4Ti5O12 was formed at 0.7 V in the first discharge process; the Li4Ti4.9V0.1O12 sample has a good reversibility and its structure is very advantageous for the transportation of lithium-ions.  相似文献   

13.
A study of the lean NO x reduction activity employing different reductants over Ag/Al2O3 samples prepared from reverse microemulsions or impregnation with EDTA-complexes is presented. A multitechnique approach is employed for characterisation of the samples and/or processes taking place in the course of the NO x -SCR reaction with propene and propane. Results by in situ-DRIFTS reveal that, for the propene reductant, silver provides a new path for hydrocarbon activation involving generation of adsorbed acrylate species as a partially oxidised active intermediate, in line with previous proposals for other non-noble metal systems. It is shown, mainly on the basis of XAFS studies, that active silver species are related to well dispersed silver aluminate-like phases with tetrahedral local symmetry and a relatively high disorder in the oxygen first shell.  相似文献   

14.
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C).  相似文献   

15.
With types of in-house-synthesized multi-walled carbon nanotubes (CNTs) and the nitrates of the corresponding metallic components, highly active CNT-promoted Cu–ZnO–Al2O3 catalysts, symbolized as Cu i Zn j Al k -x%CNTs, were prepared by the co-precipitation method. Their catalytic performance for methanol synthesis from H2/CO/CO2 was studied and compared with the corresponding CNT-free co-precipitated catalyst, Cu i Zn j Al k . It was shown experimentally that appropriate incorporation of a minor amount of the CNTs into the Cu i Zn j Al k could significantly increase the catalyst activity for methanol synthesis. Under the reaction conditions of 493 K, 5.0 MPa, H2/CO/CO2/N2 = 62/30/5/3 (v/v), GHSV = 8000 h-1, the observed CO conversion and methanol formation rate over a co-precipitated catalyst of Cu6Zn3Al1-12.5%CNTs reached 36.8% and 0.291 mol CH3OH s-1 (m2-surf. Cu)-1, which was about 44 and 25% higher than those (25.5% and 0.233 mol CH3OH s-1 (m2-surf. Cu)-1) over the corresponding CNT-free co-precipitated catalyst, Cu6Zn3Al1. Addition of a minor amount (10–15 wt%) of the CNTs to the Cu6Zn3Al1 catalyst was found to considerably increase specific surface area, especially Cu surface area of the catalyst. H2-TPD measurements revealed that the CNTs and the pre-reduced CNT-promoted catalyst systems could reversibly adsorb and store a considerably greater amount of hydrogen under atmospheric pressure at temperatures ranging from room temperature to 573 K. This unique feature would be beneficial for generating microenvironments with higher stationary-state concentration of active hydrogen adspecies on the surface of the functioning catalyst, especially at the interphasial active sites since the highly conductive CNTs might promote hydrogen spillover from the Cu sites to the Cu/Zn interphasial active sites, and thus be favorable for increasing the rate of the CO hydrogenation reactions. Alternatively, the operation temperature for methanol synthesis over the CNT-promoted catalysts can be 15–20 degrees lower than that over the corresponding CNT-free contrast system. This would contribute considerably to an increase in equilibrium CO conversion and CH3OH yield. The results of the present work indicated that the CNTs could serve as an excellent promoter.  相似文献   

16.
LiNi1-y MyO2 (M = Ga, In and Tl, y = 0.010, 0.025 and 0.050) with small y were synthesized by the combustion method by calcining in an O2 stream at 750 °C for 36 h. XRD analyses, SEM observation and measurement of the variation of discharge capacity with the number of cycles were carried out. All the samples had the Rm structure and LiNi1-y In y O2 contained LiInO2 phase as an impurity. Among LiNi1-y Ga y O2 the sample with y = 0.025 had a relatively large first discharge capacity (172.2 mAh g−1) and relatively good cycling performance (discharge capacity 140.3 mAh g−1 at n = 20). For LiNi0.975M0.025O2 (M = Ga, In and Tl), the first discharge capacity decreased in the order of the substituted element Ga, In and Tl. The variations of cation mixing and hexagonal ordering with the substituted element (decrease in I003/I104 and increase in R-factor from M = Ga through M = Tl) are considered to lead to the behavior of the first discharge capacity with the substituted element. LiNi0.975Tl0.025O2 had the smallest degradation rate of the discharge capacity.  相似文献   

17.
A series of Ru-promoted CrO x /Al2O3 as catalysts for the low-temperature oxidative decomposition of trichloroethylene (TCE) were characterized and evaluated in comparison with an unpromoted CrO x /Al2O3 catalyst. Catalyst characterization was conducted by surface area measurement, X-ray diffraction and X-ray photoelectron spectroscopy. Catalyst performance in the TCE decomposition reaction was evaluated with respect to the initial catalytic activity, the rate of catalyst deactivation, and the product concentrations of CO and Cl2 under dry or wet air conditions. The presence of a small amount of Ru, as much as 0.4 wt% in a CrO x /Al2O3 catalyst, brought about several beneficial effects on the catalytic reaction performance. As compared with the unpromoted CrO x /Al2O3, this Ru-promoted CrO x /Al2O3 catalyst showed enhanced catalytic activity (249 versus 264 °C in terms of temperature at which 50% of TCE conversion occurred), a reduced concentration of CO (180 versus 325 ppm) in the product, and a decreased propensity to deactivation. Performance improvements of the Ru-promoted CrO x /Al2O3 catalyst were thought to originate from its enhanced oxidation activity due to the coexisting highly-dispersed Ru oxides rendering less active Cr(III) to more active Cr(VI), and facilitating the process of supplying activated oxygen for the reaction system.  相似文献   

18.
Optimization of post-combustion CO2 process using DEA-MDEA mixtures   总被引:1,自引:0,他引:1  
This paper presents optimal operating conditions for the post-combustion CO2 capture process utilizing aqueous amine solutions obtained using a process simulator (HYSYS). Three alkanolamine solutions (Methyldiethanolamine MDEA, DiEthanolAmine DEA and MDEA-DEA mixture) are considered to study the performance of the capture process.The design problem addressed in this paper requires specifying the optimal operating conditions (inlet and outlet temperature of the lean solution stream on the absorber, CO2 loading, amine composition and flow rates, among others) to achieve the given CO2 emission targets at a minimum total annual cost. A detailed objective function including total operating costs and investment is considered.The influence of the variation of CO2 reduction targets and the mixing proportion of amines on the total annual cost is analyzed in detail. Numerical results are presented and discussed using different case studies.The results demonstrate that process simulators can be used as a powerful tool not only to simulate but also to optimize the most important design parameters of the post-combustion CO2 capture process.  相似文献   

19.
MnO x -CeO x /ACFN were prepared by the impregnation method and used as catalyst for selective catalytic reduction of NO with NH3 at 80°C-150°C. The catalyst was characterized by N2-BET, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The fraction of the mesopore and the oxygen functional groups on the surface of activated carbon fiber (ACF) increased after the treatment with nitric acid, which was favorable to improve the catalytic activities of MnO x -CeO x /ACFN. The experimental results show that the conversion of NO is nearly 100% in the range 100°C-150°C under the optimal preparation conditions of MnO x -CeO x /ACFN. In addition, the effects of a series of performance parameters, including initial NH3 concentration, NO concentration and O2 concentration, on the conversion of NO were studied. __________ Translated from Chemical Industry and Engineering Progress, 2007, 27(1): 87–91 [译自: 化工进展]  相似文献   

20.
The isotopic exchange has been studied between catalyst radiosulfur and H2S, formed in thiophene hydrodesulfurization (HDS) (named S-displace) on alumina supported molybdena, on CoMoOx, PdMoOx, PtMoOx and on silica–alumina supported NiWOx. S-displace was compared with radiosulfur exchange data between catalyst radiosulfur and gas phase H2S (Sexc) determined previously. The extent of Sexc was higher than that of the S-displace for Mo, CoMo in and NiW, whereas the extent of S-displace from PdMoO and PtMoO was significantly higher, than that of Sexc. Thiophene HDS product distribution data are discussed in terms of increased C=C hydrogenation and C–C hydrogenolysis activity, explained by increasing H2S production with longer circulation time of the thiophene/H2 mixture, The C1/C3<1 ratios among C4-hydrogenolysis products indicate some coke formation. The decrease of thiophene HDS activity is presumably a consequence of increasing site-blocking with the formation of more H2S and coke with longer duration of thiophene treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号