首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electric fields in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells are estimated. The quantum wells are grown by plasma-assisted molecular-beam epitaxy with plasma activation of nitrogen. The three-dimensional and planar modes of buffer layer growth are used. The transition to the three-dimensional mode of growth yields a substantial increase in the photoluminescence intensity of the quantum wells and a shift of the photoluminescence line to shorter wavelengths. These effects are attributed to the fact that, because of the extra three-dimensional localization of charge carriers in the quantum-well layer, the quantum-confined Stark effect relaxes. The effect of localization is supposedly due to spontaneous composition fluctuations formed in the AlGaN alloy and enhanced by the three-dimensional growth.  相似文献   

2.
哈斯花  班士良  朱俊 《半导体学报》2011,32(4):042001-5
本文采用变分法数值计算应变纤锌矿AlxGa1−xN/GaN/AlyGa1−yN量子阱中类氢杂质的基态结合能. 计及由自发极化和压电极化引起的内建电场, 讨论阱宽、杂质位置以及左右垒中Al组分对结合能的影响. 结果表明, 尤其在非对称量子阱即势垒宽度或(和)高度不一样的情形下, 杂质位置和垒高对结合能随阱宽变化关系的影响比垒宽更为明显. 对称或非对称结构中, 结合能随杂质位置的变化形如电子基态波函数的空间分布. 此外, 左垒中Al组分对结合能的影响较右垒更甚.  相似文献   

3.
The field dependence of drift velocity of electrons in quantum wells of selectively doped In0.5Ga0.5As/Al x In1 − x As and In0.2Ga0.8As/Al x Ga1 − x As heterostructures is calculated by the Monte Carlo method. The influence of varying the molar fraction of Al in the composition of the Al x Ga1 − x As and Al x In1 − x As barriers of the quantum well on the mobility and drift velocity of electrons in high electric fields is studied. It is shown that the electron mobility rises as the fraction x of Al in the barrier composition is decreased. The maximum mobility in the In0.5Ga0.5As/In0.8Al0.2As quantum wells exceeds the mobility in a bulk material by a factor of 3. An increase in fraction x of Al in the barrier leads to an increase in the threshold field E th of intervalley transfer (the Gunn effect). The threshold field is E th = 16 kV/cm in the In0.5Ga0.5As/Al0.5In0.5As heterostructures and E th = 10 kV/cm in the In0.2Ga0.8As/Al0.3Ga0.7As heterostructures. In the heterostructures with the lowest electron mobility, E th = 2–3 kV/cm, which is lower than E th = 4 kV/cm in bulk InGaAs.  相似文献   

4.
Electronic and optical properties are obtained with the increase in indium alloy content (x) in a Ga1-xInxN/Al0.2Ga0.8N quantum dot. The barrier height with the different In alloy contents is applied to acquire the confinement potentials. The results are obtained taking into consideration geometrical confinement effect. The optical absorption coefficient with the photon energy is observed in a Ga1-xInxN/Al0.2Ga0.8N quantum dot. The optical output with the injection current density and the threshold optical pump intensity for various In alloy contents are studied. The differential gain as functions of indium alloy content, charge density and the dot radii in the Ga1-xInxN/Al0.2Ga0.8N quantum dot are investigated. The exciton binding energy is calculated in order to obtain the exciton density, the optical gain and the threshold current density in the Ga1-xInxN/Al0.2In0.8N quantum dot. The results show that the red shift energy with an increase in In alloy content is found and the differential gain increases with the charge carrier density.  相似文献   

5.
张彬  闫祖威  张敏 《半导体学报》2011,32(6):062003-5
本文采用有效质量近似,考虑类LO声子,类TO声子以及内建电场的影响,利用变分法研究了应变GaN/AlxGa1-xN柱形量子点中的极化子效应。数值计算表明,极化子效应显著降低了杂质态的结合能。而且,类LO声子对结合能的贡献起主要作用,各向异性的角度和Al组分对结合能的影响则很小。  相似文献   

6.
Features of plasma-assisted molecular-beam epitaxy of AlGaN compounds at relatively low temperatures of the substrate (no higher than 740°C) and various stoichiometric conditions for growth of the nitrogen- and metal-enriched layers are studied. Discrete submonolayer epitaxy for formation of quantum wells and n-type blocking layers without varying the fluxes of components was used for the first time in the case of molecular- beam epitaxy with plasma activation of nitrogen for the nanostructures with the Al x Ga1 ? x N/Al y Ga1 ? y N quantum wells. Structural and optical properties of the Al x Ga1 ? x N layers in the entire range of compositions (x = 0–1) and nanostructures based on these layers are studied; these studies indicate that there is photoluminescence at room temperature with minimum wavelength of 230 nm. Based on the analysis of the photoluminescence spectra for bulk layers and nanoheterostructures and their temperature dependences, it is concluded that there are localized states in quantum wells. Using the metal-enriched layers grown on the c-Al2O3 substrates, heterostructures for light-emitting diodes with Al x Ga1 ? x N/Al y Ga1 ? y N quantum wells (x = 0.4–0.5, y = x + 0.15) were obtained and demonstrated electroluminescence in the ultraviolet region of the spectrum at the wavelength of 320 nm.  相似文献   

7.

We report on fabrication and studies of composite heterostuctures consisting of an Al0.55Ga0.45N/Al0.8Ga0.2N quantum well and surface Al nanoislands, grown by plasma-assisted molecularbeam epitaxy on c-sapphire substrates. The influence of a substrate temperature varied between 320 and 700ºC on the size and density of the deposited Al nanoislands is evaluated. The effect of Al nanoislands on decay kinetics of the quantum well middle-ultraviolet photoluminescence has been investigated by time resolved photoluminescence. The samples with the maximum density of Al nanoislands of 108 cm–2 and lateral dimensions in the range of 100–500 nm demonstrated shortening of the photoluminescence lifetime, induced by interaction of the emitting quantum well and the plasmonic metal particles.

  相似文献   

8.
We have studied the influence of indium (In) composition on the structural and optical properties of Inx Ga1−xN/GaN multiple quantum wells (MQWs) with In compositions of more than 25% by means of high-resolution x-ray diffraction (HRXRD), photoluminescence (PL), and transmission electron microscopy (TEM). With increasing the In composition, structural quality deterioration is observed from the broadening of the full width athalf maximum of the HRXRD superlattice peak, the broad multiple emission peaks oflow temperature PL, and the increase of defect density in GaN capping layers and InGaN/GaN MQWs. V-defects, dislocations, and two types of tetragonal shape defects are observed within the MQW with 33% In composition by high resolution TEM. In addition, we found that V-defects result in different growth rates of the GaN barriers according to the degree of the bending of InGaN well layers, which changes the period thickness of the superlattice and might be the source of the multiple emission peaks observed in the InxGa1−xN/GaN MQWs with high in compositions.  相似文献   

9.
Results of room-temperature photoreflectance measurements on three GaAs/Al0.33Ga0.67As multiquantum well (MQW) structures with three different widths of wells and on two GaAs/Al0.33Ga0.67As high-electron-mobility transistor (HEMT) structures are presented. Energy-gap-related transitions in GaAs and AlGaAs were observed. The Al content in AlGaAs was determined. MQW transition energies were determined using the first derivative of a Gaussian profile of the measured resonances. In order to identify the transitions in the MQS, the experimentally observed energies were compared with results of the envelope function calculation method for a rectangular quantum well. The Franz–Keldysh oscillation (FKO) model was also used to determine the built-in electric field in various parts of the investigated structures. The values of the electric fields allow us to hypothesise about the origin of these fields. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Polarization-engineered Ga-face GaN-based heterostructures with a GaN cap layer and an AlGaN/p-GaN back barrier have been designed for normally-off field-effect transistors (FETs). The simulation results show that an unintentionally doped GaN cap and p-GaN layer in the buffer primarily deplete electrons in the channel and the Al0.2Ga0.8N back barrier helps to pinch off the channel. Experimentally, we have demonstrated a normally-off GaN-based field-effect transistor on the designed GaN cap/Al0.3Ga0.7N/GaN channel/Al0.2Ga0.8N/p-GaN/GaN heterostructure. A positive threshold voltage of 0.2 V and maximum transconductance of 2.6 mS/mm were achieved for 80-μm-long gate devices. The device fabrication process does not require a dry etching process for gate recessing, while highly selective etching of the GaN cap against a very thin Al0.3GaN0.7N top barrier has to be performed to create a two-dimensional electron gas for both the ohmic and access regions. A self-aligned, selective etch of the GaN cap in the access region is introduced, using the gate metal as an etch mask. The absence of gate recess etching is promising for uniform and repeatable threshold voltage control in normally-off AlGaN/GaN heterostructure FETs for power switching applications.  相似文献   

11.
The results of the investigation of low-temperature time-resolved photoluminescence in undoped and Si-doped In0.2Ga0.8N/GaN structures, which contain 12 quantum wells of width 60 Å separated by barriers of width 60 Å, are reported. The structures were grown by the MOCVD technique on sapphire substrates. The photoluminescence properties observed are explained by the manifestation of two-dimensional donor-acceptor recombination. These properties are the high-energy shift of the peak upon increasing the pumping intensity, a low-energy shift with increasing delay time, and a power law of luminescence decay of the t type. The estimates of the total binding energy for donor and acceptor centers are given. This energy is 340 and 250 meV for Si-doped and undoped quantum wells, respectively. The role of the mosaic structure, which is typical for Group III hexagonal nitrides, is discussed as a factor favorable for the formation of donor-acceptor pairs.  相似文献   

12.
Within the effective-mass approximation, we calculated the influence of strain on the binding energy of a hydrogenic donor impurity by a variational approach in a cylindrical wurtzite GaN/Al x Ga1−x N strained quantum dot, including the strong builtin electric field effect due to the spontaneous and piezoelectric polarization. The results show that the binding energy of impurity decreases when the strain is considered. Then the built-in electric field becomes bigger with the Al content increasing and the binding energy of hydrogenic donor impurity decreases when the Al content is increasing. For dot height L < 2 nm, the change of the binding energy is very small with the Al content variety. This work has been supported by the National Natural Science Foundation of China (No. 10564003) and the Key Project of the Science and Technology Research of the Educational Ministry of China (No. 208025)  相似文献   

13.
The spectra of electroluminescence, photoluminescence, and photocurrent for the In0.2Ga0.8N/GaN quantum-well structures are studied to clarify the causes for the reduction in quantum efficiency with increasing forward current. It is established that the quantum efficiency decreases as the emitting photon energy approaches the mobility edge in the In0.2Ga0.8N layer. The mobility edge determined from the photocurrent spectra is E me = 2.89 eV. At the photon energies hv > 2.69 eV, the charge carriers can tunnel to nonradiative recombination centers with a certain probability, and therefore, the quantum efficiency decreases. The tunnel injection into deep localized states provides the maximum electroluminescence efficiency. This effect is responsible for the origin of the characteristic maximum in the quantum efficiency of the emitting diodes at current densities much lower than the operating densities. Occupation of the deep localized states in the density-of-states “tails” in InGaN plays a crucial role in the formation of the emission line as well. It is shown that the increase in the quantum efficiency and the “red” shift of the photoluminescence spectra with the voltage correlate with the changes in the photocurrent and occur due to suppression of the separation of photogenerated carriers in the field of the space charge region and to their thermalization to deep local states.  相似文献   

14.
The scattering rate of electrons in a quantum well by localized polar optical and interface phonons is considered. The dependence of the force of the electron-phonon interaction on the frequency of optical phonons in materials of the heterostructure forming the electron and phonon quantum wells is determined. It is shown that, by varying the composition of semiconductors forming the quantum well and its barriers, it is possible to vary the scattering rates of electrons by a factor of several times. The scattering rates of electrons by polar optical phonons are calculated depending on the fractions In x and In y in the composition of semiconductors forming the In x Al1 ? x As/In y Ga1 ? y As quantum wells. Dependences of the mobility and saturated drift velocity of electrons in high electric fields and quantum wells In y Ga1 ? y As on the composition of the In x Al1 ? x As barriers introduced into quantum wells are determined experimentally. The electron mobility increases, while the saturated drift velocity decreases as the fraction of In x in the composition of barriers is increased.  相似文献   

15.
Modulation spectroscopy is an optical characterization tool that can be of great utility to the materials scientist. We present here numerous examples where a simple photo-reflectance and electroreflectance setup is used in our laboratory to determine such important material parameters as alloy composition and carrier concentration in a very short time. For determining alloy composition in semiconductors, contactless room temperature photoreflectance is nearly as sensitive as low temperature photoluminescence. Examples will be given on how to determine: the effects of surface preparation and implant damage; alloy composition and carrier homogeneity for large area wafers to better than 1%; the segregation coefficient of isoelectronic impurities in bulk semiconductors; the sub-band energies in quantum well structures; and the presence and homogeneity of built-in electric fields in MODFET structures. Particular emphasis will be placed on band edge and exciton effects on the photoreflectance and on the criteria used to distinguish between them. Materials studied included Si doped GaAs, AlxGa1-xAs for variousx grown by OMVPE and MBE, bulk InP doped with iso-electronic As and Sb, and MODFET structures.  相似文献   

16.
We have studied the evolution of threading dislocations (TDs), stress, and cracking of GaN films grown on (111) Si substrates using a variety of buffer layers including thin AlN, compositionally graded Al x Ga1-x N (0 ≤ x ≤ 1), and AlN/Al y Ga1-y N/Al x Ga1-x N (0 ≤ x ≤ 1, y = 0 and 0.25) multilayer buffers. We find a reduction in TD density in GaN films grown on graded Al x Ga1-x N buffer layers, in comparison with those grown directly on a thin AlN buffer layer. Threading dislocation bending and annihilation occurs in the region in the graded Al x Ga1-x N grown under a compressive stress, which leads to a decrease of TD density in the overgrown GaN films. In addition, growing a thin AlN/Al y Ga1-y N bilayer prior to growing the compositionally graded Al x Ga1-x N buffer layer significantly reduces the initial TD density in the Al x Ga1-x N buffer layer, which subsequently further reduces the TD density in the overgrown GaN film. In-situ stress measurements reveal a delayed compressive-to-tensile stress transition for GaN films grown on graded Al x Ga1-x N buffer layers or multilayer buffers, in comparison to the film grown on a thin AlN buffer layer, which subsequently reduces the crack densities in the films.  相似文献   

17.
An increase in the electron mobility and drift velocity in high electric fields in quantum wells of selectively doped InAlAs/InGaAs/InAsAs heterostructures is obtained experimentally via controlling the composition of semiconductors forming the interface. The electron mobility at the interface in the In0.8Ga0.2As/In0.7Al0.3As metamorphic structure with a high molar fraction of In (0.7–0.8) is as high as 12.3 × 103 cm2 V−1 s−1 at room temperature. An increase in the electron mobility by a factor of 1.1–1.4 is attained upon the introduction of thin (1–3 nm) InAs layers into a quantum well of selectively doped In0.53Ga0.47As/In0.52Al0.48As heterostructures. A maximal drift velocity attains 2.5 × 107 cm/s in electric fields of 2–5 kV/cm. The threshold field F th for the intervalley Γ-L electron transfer (the Gunn effect) in the InGaAs quantum well is higher than in the bulk material by a factor of 2.5–3. The effect of two- to threefold decrease in the threshold field F th in the InGaAs quantum well is established upon increasing the molar fraction of In in the InAlAs barrier, as well as upon the introduction of thin InAs inserts into the InGaAs quantum well.  相似文献   

18.
The origin of the abrupt decrease withx both in electron concentration and in mobility of AlxGa1−xN in the range ofx between 0.4 and 0.6 was investigated by photoluminescence from epitaxial layers covering the entire range of alloy composition. Band edge luminescence from undoped layers was observed out to anx value of 0.75. Whenx was larger than 0.2, a peak 0.2–0.5 eV below the band edge peak was also observed both from undoped and from Zn doped samples. This is tentatively ascribed to an unidentified acceptor (or acceptors) related to the presence of Al. No luminescence which could be attributed to a deep native donor defect was observed in semi-insulating AlxGa1−xN layers. When Zn was added in the lowx range of the alloys, a broad band 0.5–0.8 eV below the band edge peak was observed as well as a relatively narrow peak.  相似文献   

19.
In these experiments impurity-induced layer disordering (IILD) utilizing chemical reduction of SiO2 by Al (from Al0.8Ga0.2As) is employed to generate Si and O to effect layer disordering. The SiO2-Al0.8Ga0.2As reaction is studied with respect to annealing ambient. By controlling the extent of disordering via As4 overpressure, closely spaced (∼1μm) Si-O IILD buried heterostructure lasers can be optically coupled or uncoupled. Direct observation of O incorporation into the buried layers is shown using secondary ion mass spectroscopy (SIMS). The thermal stability of separate-confinement AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure (QWH) laser crystals is investigated using SIMS, transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The data show that the thermal stability of a strained-layer In0.1Ga0.9As quantum well (QW) is strongly dependent upon: (1) the layer thickness and heterointerfaces of the AlyGa1−yAs-GaAs waveguide layers located directly above and below the QW, (2) the type of surface encapsulant employed, and (3) the annealing ambient. Narrow single-stripe (<2μm) lasers fabricated via Si-O diffusion and layer disordering exhibit low threshold currents (Ith ∼ 4 mA) and differential quantum efficiencies,η, of 22% per facet under continuous (cw) room-temperature operation.  相似文献   

20.
The methods of high-resolution X-ray diffraction have been used to study the multilayered structures in an In x Ga1 − x N/GaN system grown by the method of metal-organic chemical-vapor deposition. A correlation between the strain state (relaxation) of the system, the indium content within quantum wells, the ratio of the barrier/well thicknesses, and the number of quantum wells in the active superlattice is established. It is shown that partial relaxation is observed even in a structure with one quantum well. The results we obtained indicate that the relaxation processes are bound to appreciably affect the optical characteristics of devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号