首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optical fiber sensor based on a multimode tapered fiber cascading fiber Bragg grating has been proposed and experimentally demonstrated for the simultaneous measurement of humidity and temperature. The sensor was constructed using a tapered fiber that was coated with polyvinyl alcohol and a fiber Bragg grating with high reflectivity. The measurement of humidity and temperature was achieved by monitoring changes in reflective optical power and spectral shift, respectively. Due to the different measurement methods, the effect of temperature on humidity measurement may be ignored. The theoretical analysis and experimental results show that the highest sensitivities of 0.33 µW/%RH and 10.9?pm/°C were achieved when the diameter of the taper waist was 26?µm and the thickness of coating was 3.3?µm. Due to the advantages of good linearity, low cost of fabrication and convenient operation, the proposed sensor is promising for simultaneously measuring humidity and temperature.  相似文献   

2.
Explosive trace detection equipment has been deployed to airports for more than a decade. During this time, the need for standardized procedures and calibrated trace amounts for ensuring that the systems are operating properly and detecting the correct explosive has been apparent but a standard representative of a fingerprint has been elusive. Standards are also necessary to evaluate instrumentation in the laboratories during development and prior to deployment to determine sample throughput, probability of detection, false positive/negative rates, ease of use by operator, mechanical and/or software problems that may be encountered, and other pertinent parameters that would result in the equipment being unusable during field operations. Since many laboratories do not have access to nor are allowed to handle explosives, the equipment is tested using techniques aimed at simulating the actual explosives fingerprint. This laboratory study focused on examining the similarities and differences in three different surface contamination techniques that are used to performance test explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples and to offer scenarios where each contamination technique is applicable. The three techniques used were dry transfer deposition of standard solutions using the Transportation Security Laboratory’s (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards onto substrates, and fingerprinting of actual explosives onto substrates. RDX was deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each substrate type using each contamination technique. The substrate types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and painted metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination deposition techniques. Some samples were analyzed using scanning electron microscopy (SEM) and some were extracted and analyzed with high performance liquid chromatography (HPLC) or gas chromatography with an electron capture detector (GC-ECD) to quantify the data.  相似文献   

3.
Abstract

The influence of temperature and humidity on the determination of benzene concentration were characterized using a piezoelectric crystal gas sensor. Sensing layers coated with polymethylphenylsiloxane and polyvinylchloride was used for real-time monitoring of benzene, a major atmospheric pollutant. When the humidity was varied from 35% to 75%, the detection limitations of the sensor were reduced and the response and frequency recovery times increased. However, when the temperature was increased from 5?°C to 60?°C, the response and recovery time were decreased but the sensitivity performance was degraded. Models were developed for the correlation between the benzene concentration and temperature and humidity.  相似文献   

4.
In this study, Ti-6Al-4V (Ti-64) coatings were prepared on commercial Ti-64 substrates via a high-pressure cold spray process. The coatings were heat treated at different temperatures of 400–1000°C to investigate the effect of heat treatment temperature on their microstructure and mechanical and tribological properties. The increased heat treatment temperature from 400 to 600°C promoted diffusion between sprayed Ti-64 particles. Recrystallization of the sprayed particles was found at the heat treatment temperature of 800°C and grain growth was found in the microstructure of the coating heat treated at 1000°C. The highest and lowest hardnesses of the heat-treated coatings were found at heat treatment temperatures of 400 and 800°C, respectively. Therefore, the lowest and highest specific wear rates of the coatings were consistently found at 400 and 800°C due to their highest and lowest abrasive wear resistances associated with their highest and lowest surface hardnesses, respectively. The coating heat treated at 400°C showed the highest surface hardness of 470.1 Hv and lowest specific wear rate of 69.6 × 10?14 m3/Nm. It could be concluded that the microstructure and mechanical and tribological properties of the Ti-64 coatings were significantly influenced by heat treatment temperature.  相似文献   

5.
It is found that damaged regions are formed around indium contacts to p-type CdHgTe {310} heteroepitaxail layers (HELs) on GaAs substrates and the sizes of these regions depend on the temperature and time of annealing in air. It is shown experimentally that at an annealing temperature of 90 °C, the rate of expansion of the damaged regions is about 4 µm/h, and at temperatures of 120 °C, it is more than 25 µm/h. After 488 hours of annealing of plates of CdHgTe HELs at 60 °C in air, the formation of damaged regions around the indium contacts to the p regions was not observed. The studies were performed on plates of p-type CdHgTe HELs on GaAs substrates whose surface was covered with SiO2 and Si3N4 dielectrics (with a total thickness of about 0.15 µm), with windows where p-n junctions were generated by ion implantation of boron.  相似文献   

6.
Abstract

The proposed work deals with the investigation of magnetorheological based minimum quantity lubrication of graphene oxide (GO) based jojoba oil as bio-lubricant on machinability and tool wear mechanism of turning Monel K500 alloy. Experiments were carried out for dry, flooded, minimum quantity lubrication (MQL) and magnetorheological (MR–MQL) conditions using medium duty lathe. The process parameters include the cutting speed 95, 110, 125?m/min, feed rate 0.050, 0.075, 0.1?mm/rev and depth of cut 0.25, 0.50, 0.75?mm for the output responses such as surface roughness, cutting temperature and tool flank wear. The results indicated that GO-based bio-lubricant MR–MQL reduced coefficient of friction (COF) of 0.051 and wetting angle of 6°, as well as improved machining performance such as cutting temperature of 145?°C, the surface roughness of 0.614?µm, flank wear of 0.18?mm with enhanced lubrication regime under extreme wear conditions.  相似文献   

7.
In this paper, the mechanical properties of the Ni?C50.5?at.%?CTi alloy super-elastic wires manufactured by a conditioned multi-passed process of annealing and cold-drawing have been studied. The annealing temperature of 450~800°C, time of 20?min~3?h and the cold-drawing amount of 6.9%~39% were chosen. Their effects on the thermo, mechanical, and surface morphology of the Ni?CTi wires have been studied. The differential scanning calorimetry and tensile-recovery tests were adopted to obtain the phase transformation temperatures and mechanical hysteresis of the Ni?CTi SMA wires with different treatment conditions. The results show that the phase transition temperature of Ni?CTi wire can be changed by varying the annealing temperature and time; cold-drawing deformation and subsequent annealing have a great influence on the super-elasticity. The process with 39% cold-drawing amount, 600°C and 20?min annealing is shown to be effective in the manufacturing.  相似文献   

8.
Frost formation on a horizontal copper surface under low air temperature and forced convection conditions is investigated experimentally. Both the frost crystals pattern and the frost layer thickness formed on the cold plate are compared under different experimental conditions. The environmental variables considered in this study include the ambient temperature (T ), air relative humidity (φ), and velocity (v), as well as the cold surface temperature (Tw). The tested ranges are −5≤T ≤5 °C, 50%≤ φ≤80%, 2.2≤v≤8.0 m/s, −16.8≤T w ≤−25.5 °C. The experimental results show the cold surface temperature and the air relative humidity have obvious effects on the frost growth: the frost layer thickness increases strongly with the decreasing cold surface temperature and increasing air relative humidity. The air temperature and air velocity or Reynolds number are also important factors affecting the frost crystals’ growth and thickness. With the increase of the air temperature and velocity, the frost crystals become denser, and the frost layer thickness become thicker, but this trend becomes weaker under higher air temperature and velocity.  相似文献   

9.
In this study, we investigated the microstructural, mechanical, and tribological properties of rice husk (RH)-based carbon carbonized at various carbonizing temperatures under dry conditions. All samples exhibited amorphous carbon structures and the X-ray diffraction spectra of the samples carbonized at 1300 and 1400?°C indicated the presence of a polymorphic crystals of silica. The hardness increased with temperature due to the densification of the structure and the presence of the hard crystalline silica. At low normal loads, the mean friction coefficient of the material decreased as the carbonizing temperature was increased from 600 to 800?°C and slightly decreased as the carbonizing temperature was further increased from 800 to 1400?°C. At the highest load, all samples, except for that carbonized at 600?°C, exhibited extremely low friction coefficients (around 0.05). The wear rates of the all samples were smaller than 10?5 mm3/N·m, indicating that RH carbon exhibits sufficient wear resistance. A Raman spectroscopic analysis of the worn surface of a steel ball revealed that the transfer layer at 600?°C had a less graphitic structure compared to the other carbonizing temperature. Based on these findings, we recommend an optimal carbonizing temperature for applications of sliding materials exposed to dry sliding contact.  相似文献   

10.
The temperature dependence of the solid particle erosion of polydimethylsiloxane (PDMS) using aluminum oxide particles was investigated between the temperatures of ?178 and 17 °C for a variety of angles of attack using a novel cryogenic abrasive jet machining apparatus. It was found that the most efficient machining of PDMS (volume removed per kinetic energy of erodent) occurred at approximately ?178 °C, at angles of attack between 30° and 60° from the surface. A previously developed surface evolution model was used to predict the size and shape of unmasked channels at various temperatures. A good agreement between the predicted and measured channel profiles was obtained when the average blasting temperature was between approximately ?127 and ?178 °C. At ?82 °C, the fit was poorer, probably because of an increase in particle embedding. Although it was demonstrated that PDMS could be machined at temperatures above its glass transition, the erosion rate increased by a factor of more than 10 when the machining temperature was below this point.  相似文献   

11.
The frictional and wear characteristics of nanostructured DLC films were investigated. The coatings were deposited on silicon substrates by irradiation of a mass-separated C60 ion beam with 5 keV of energy and a deposition temperature ranging from 100 to 450 °C. The effects of deposition temperature on the surface morphology, nano-structure, mechanical properties and tribological characteristics of the coatings were assessed. Results showed that deposition temperature strongly affects the nanostructure and surface morphology of the coatings. Coatings deposited at temperatures exceeding 350–400 °C exhibited an increase in surface roughness as well as compressive stress due to the formation of graphite, which led to a significant increase in the friction coefficient and wear rate. Coatings deposited at 300 °C showed the best tribological properties.  相似文献   

12.
Cr2O3 nanoparticles have been prepared for precipitation technique at reaction temperature 50 °C. The prepared samples were annealed different temperatures at 500,700 and 1000 °C. Synthesized powders were characterized as X-ray diffraction, optical, transmission electron microscope, SEM with EDAX, humidity sensor, FTIR. The annealing temperature has been found to be playing a crucial role in the controlling particle size. XRD study shows the rhombohedral crystal structure of highly preferential orientation along (1 0 4) direction. FTIR reveals that the presence Cr–O bonds in the structure. The TEM images show that the size of NPs of Cr2O3 varied from 26 to 60 nm with average crystalline size 43 nm. UV–visible spectrum shows the absorption band of Cr2O3 nanoparticles at 400 nm. The humidity sensor of the Cr2O3 nanoparticles was studied by two temperature method. 1000 °C annealed Cr2O3 nanoparticles show better sensing properties and exhibits good linearity in response than 500 °C. SEM images show the clusters and agglomeration of nanoparticles. EDAX spectrum confirms the presence of Cr2O3 nanoparticles. Each samples have been characterized as sensing materials to determine relative humidity in the range of 20–90%. The humidity sensing property increased with increasing of annealing temperature and the resistance was decreased.  相似文献   

13.
The effect of an 80Ni?20Cr (at.%) metallic coating on the cyclic oxidation behaviour of a Ti3Al‐based alloy with the composition Ti?25Al?11Nb (at.%) was investigated in this study. Cyclic oxidation tests were carried out in air at 600 °C and 900 °C for 120 h. For one cycle test, the specimens were held for 24 h at test temperature and then furnace‐cooled to room temperature. The oxidation rate was determined by plotting the mass gain per unit surface area of the specimen vs. exposure time. The morphology and composition of the oxidation products were characterized on the cross‐section of the specimens by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and atomic force microscopy. The oxidation scale forms during exposure at both 600 °C and 900 °C. TiO2 is the main oxide component, whereas the Al2O3 layer appears only discontinuously. The remarkable improvement in oxidation resistance at 900 °C was attributed to the chemical composition and structure of the scale formed on the 80Ni?20Cr coating.  相似文献   

14.
D. Roy  S.S. Singh  B. Basu  W. Lojkowski  R. Mitra  I. Manna 《Wear》2009,266(11-12):1113-1118
Resistance to wear is an important factor in design and selection of structural components in relative motion against a mating surface. The present work deals with studies on fretting wear behavior of in situ nano-Al3Ti reinforced Al–Ti–Si amorphous/nanocrystalline matrix composite, processed by high pressure (8 GPa) sintering at room temperature, 350, 400 or 450 °C. The wear experiments were carried out in gross slip fretting regime to investigate the performance of this composite against Al2O3 at ambient temperature (22–25 °C) and humidity (50–55%). The highest resistance to fretting wear has been observed in the composites sintered at 400 °C. The fretting wear involves oxidation of Al3Ti particles in the composite. A continuous, smooth and protective tribolayer is formed on the worn surface of the composite sintered at 400 °C, while fragmentation and spallation leads to a rougher surface and greater wear in the composite sintered at 450 °C.  相似文献   

15.
Ni-based self-lubricating composites with multiple-lubricants addition were prepared by a powder metallurgy technique, and the effect of multiple-lubricants on tribological properties was investigated from room temperature to 700?°C. The synergetic effects of graphite, MoS2, and metallic silver lubricants on the tribological characteristics of composites were analyzed. XRD analysis showed that new Cr x S y and Mo2C phase were formed in the composites containing graphite, MoS2 and metallic Ag lubricants during the sintering process. The average friction coefficients (0.69?C0.22) and wear rates (11.90?C0.09?×?10?5?mm3?N?1?m?1) were obtained when rubbing against Inconel 718 alloy from room temperature to 700?°C due to synergetic lubricating action of multiple-lubricants. A smooth lubricating was gradually generated on the worn surface, and the improving of tribological properties was attributed to the formation of lubricious glaze film on the worn surface and their partially transferred to the counterface. The graphite played the main role of lubrication at room temperature, while molybdate phase and graphite were responsible for low friction coefficients and wear rates at mid/high temperatures. The synergetic lubricating effect of molybdate (produced in the rubbing process at high temperatures) iron oxide (transfer from disk material to the pin) and remaining graphite multiple-lubricants play an important lubricating role during friction tests at a wide temperature range.  相似文献   

16.
In this study, we investigated the effect of temperature on the friction and wear of rice bran (RB) ceramics, a hard porous carbon material made from rice bran, sliding against alumina, stainless steel, and bearing steel balls under dry conditions. Friction tests were performed using a ball-on-disk-type friction tester wherein a ceramic heater was installed in the rotational stage. The surface temperature of the RB ceramic disk specimens was controlled at 20, 100, 150, or 200°C. The normal load was 1.96 N, sliding velocity was 0.1 m/s, and number of cycles was 20,000. The effect of surface temperature on the friction and wear of RB ceramics substantially differed among the ball material types. The friction coefficient for the RB ceramics sliding against an alumina ball decreased with increasing temperature and exhibited an extremely low value (0.045) at 200°C. The friction coefficient in the case of the RB ceramics sliding against a stainless steel ball exhibited a stable value as the temperature was increased to 150°C and slightly decreased as the temperature was increased further, reaching a low value of 0.122 at 200°C. The friction coefficient for the RB ceramics sliding against bearing steel ball drastically increased with increasing temperature, reaching 0.381 at 200°C. The specific wear rate of the RB ceramics increased with increasing temperature; it was lowest when sliding against alumina and highest when sliding against bearing steel. The wear of the alumina ball was the lowest and that of the bearing steel ball was the highest under all investigated temperature conditions. On the basis of these results, we concluded that alumina is a promising counterpart material for RB ceramics sliding at high temperatures (≤200°C).  相似文献   

17.
A pin-on-disk tribometer was used to study the coefficient of friction as a function of temperature for tricresylphosphate (TCP) on CVM M-50 tool steel under the following conditions: TCP was present in a liquid reservoir (bulk lubrication), and TCP was applied as a liquid layer directly to the disk (limited lubrication). Under limited lubrication conditions, experiments were performed in dry (< 100 ppm H2O) air, dry (< 20 ppm H2O) nitrogen, dry nitrogen with the disks heated to 700°C, then cooled to room temperature before the TCP was applied and the measurements made (preheated disks), and moist nitrogen using preheated disks. The coefficient of friction decreased at a characteristic temperature, Tr Tr values observed were: 265°C for bulk lubrication conditions in dry air, 225°C for limited lubrication conditions in dry air, and 215°C for limited lubrication conditions in dry nitrogen. The use of preheated disks produced a sharp failure temperature at 218°C which was taken as the temperature about which the behavior of TCP should be judged. X-ray photoelectron spectroscopy confirmed the presence of phosphate on the surface of TCP-lubricated iron pins. Depth profile studies support the suggestion that a chemical reaction occurs between the TCP and the metal surface at Tr.  相似文献   

18.
Electroless nickel-phosphorous alloy was plated onto quenched and hardened stainless steel. Laser surface treatments by YAG laser beams were carried out with the objective of improving -both the wear and the corrosion resistance of the platings. The friction and wear properties of the laser-treated platings were compared to unplated, untreated plated, and 400°C heat-treated plated substrates in pin-on-disc tests under unlubricated conditions. It was shown that laser treatments gave about a ten percent reduction in the friction coefficient compared with unplated substrates, and that controlled laser-treated plating improved the wear resistance of untreated plating to a level equivalent to 400°C heat-treated plating. It was found that the salt-spray corrosion resistance of the laser-treated platings was much greater than the unplated material and the 400°C heat-treated plating. The laser treatment is capable of improving both wear and corrosion resistance; and the wear resistance is externally governed by the hardness of the plating, and the corrosion resistance is governed by the crystal structure, especially the amount of amorphous nickel.  相似文献   

19.

Experiments were conducted to evaluate the effect of temperature during magnetic abrasive finishing of Mg alloy bars. A magnetic abrasive finishing process is an unconventional finishing technique that has been used to achieve high-quality surfaces with dimensional accuracy. In this study, a Mg alloy bar, which is widely used in automobiles, aircraft, IT, and the defense industry, was chosen as a cylindrical workpiece. The workpiece was then finished with a magnetic abrasive finishing process at three different temperatures, i.e., a cryogenic temperature, room temperature, and high temperature. In the cryogenic temperature condition, liquid nitrogen and argon gas were used as the cryogenic cooling gases in the finishing process; the results from this treatment were compared with those obtained at room temperature and high temperature conditions. At the room temperature condition, the finishing process of the cylindrical workpiece was performed at 24 °C. To carry out the high temperature condition, a hot air dryer was used to maintain a finishing temperature of 112 °C. The experimental results show that the room and cryogenic temperatures could yield excellent performance in terms of the surface roughness. However, in terms of the removal weight and change in diameter, the high temperature condition was found to be superior. In the present research, the improvements of the surface roughness (Ra) at room temperature (24 °C) and cryogenic temperature (-120 °C) conditions were 84.21 % and 55 %, respectively.

  相似文献   

20.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号