首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological connectivity is an important driver of ecosystem structure in floodplain rivers; however, little is known of how hydrological connectivity affects the structure and functioning of food webs in these systems. This study examines aquatic food web structure in 10 floodplain lakes on a dryland river floodplain in eastern Australia across a connectivity gradient. Results for fishes suggest that benthic carbon sources are more important in high connectivity billabongs than in low connectivity billabongs and that pelagic sources are more important in low connectivity billabongs than in high connectivity billabongs. Fishes in less connected billabongs were also found to feed at higher trophic levels than in more connected billabongs. We hypothesize that in high connectivity billabongs, where suitable benthic primary sources are abundant, common fish species such as carp and bony bream feed as detritivores or herbivores; while in low connectivity billabongs, where benthic sources are less abundant, the same species feed as planktivores, insectivores or piscivores. This dietary difference may also be promoted by greater predation efficiency in less structurally complex low connectivity billabongs. The feeding behaviour of these fish species subsequently influences the trophic positions of fishes higher in the food chain and ultimately the total food chain lengths that high and low connectivity billabongs support. The results of this study highlight the importance of hydrological connectivity to the structure of food webs in these systems and the potential for them to be affected by water resource development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Despite the increasing use of fatty acids (FAs) as biomarkers in aquatic food web analysis, little information is available regarding differences in FA profiles of fish among habitat types in river–floodplain ecosystems. The objectives of this study were to (i) test whether the FA profiles of channel catfish (Ictalurus punctatus) differed among three reaches of the lower Kaskaskia River and its floodplain lakes, and (ii) to compare FA profiles among muscle, liver, and adipose fin tissues collected from these fish. Profiles differed significantly among sites, especially between upper and lower river sites, and between river channel and oxbow lake sites, suggesting differences in FA availability for channel catfish occupying different habitats and river reaches in the Kaskaskia River system. Specifically, the essential FAs 18:2n‐6 and 18:3n‐3 increased in catfish tissues from upstream to downstream reaches, which could reflect increased floodplain connectivity and decreasing impoundment effects downstream. Ratios of n‐3 to n‐6 FAs were higher in fish from oxbow lakes, perhaps suggesting increased use of autochthonous production in the floodplain relative to the main river channel. Muscle and adipose fin FA profiles exhibited similar location‐related trends, whereas liver FA profiles were markedly different from the other tissue types. These results suggest that adipose fin tissue samples may be a viable, less‐invasive alternative to muscle tissue for analysis of FA profiles in channel catfish. Our study supports the use of tissue FA profiles in identifying habitat utilization by channel catfish, and perhaps habitat‐specific energy contributions to riverine consumers. Furthermore, our work highlights floodplain habitat as a potential source of essential n‐3 FA and the associated importance of maintaining river–floodplain connectivity to support aquatic food webs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A BACI (before‐after‐control‐impact) sampling design was applied to determine the possible effects of ramping rate (RR) regulation on food webs structure and function in a regulated boreal river. We used carbon and nitrogen stable isotope signatures of primary producers, macroinvertebrates and fish to determine variations in the source of carbon fuelling the food web as well as changes in the food web structure under variable RR flow regime. We hypothesized that unrestricted RR would (1) increase the connectivity between terrestrial and aquatic environments allowing for a higher contribution of terrestrial carbon to support the food web and (2) decrease food web length because of frequent disturbances. Unrestricted RR had little influence on δ13C values for the overall food web with most of the differences found between impacted sites compared and control sites, indicating that the proportion of various carbon sources entering the diet of consumers remained unchanged under unrestricted RR. In contrast, significantly higher δ15N values were measured in impacted sites (invertebrates and fish) and as well as under unrestricted ramping flow regime (invertebrates). Further, unrestricted RR was associated to a significant decrease in the difference between macroinvertebrates and fish δ15N signatures, equivalent to a reduction of the length of the food web by at least one trophic level. Results from this study indicate that RR should be taken into consideration in the regulation of operating regimes on rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Natural abundances of stable isotopes in lotic food webs yield valuable information about sources of organic matter for consumers and trophic structure. However, interpretation of isotopic information can be challenging in the face of variability in organisms at the base of food webs. Unionid and dreissenid mussels, commonly used as baseline organisms in lakes, are uncommon in many river settings and can have variable diets, thus making them unsuitable as a universal baseline for many river food web studies and often forcing reliance on more common benthic insects for this purpose. Turnover rates of body carbon and nitrogen in insects are relatively rapid (1 to 50 days half‐life). These rapid turnover rates in primary consumers can result in considerable temporal variability in δ13C that rivals that of algae (>10‰ range within a site). This suggests that using primary consumers as a surrogate baseline for algae may not circumvent the problem of temporal variability and the resultant mismatch of sources with longer‐lived, slow‐growing secondary and tertiary consumers. There are several strategies for reducing the influence of these confounding factors when bivalves with a known diet are not present. These include sampling over large spatial scales and correlating δ13C of consumers with the source of interest (e.g. benthic algae), sampling baseline organisms multiple times in the weeks preceding sampling of larger consumers (particularly in response to large changes in discharge) and using algal‐detrital separation methods and multiple tracers as much as possible. Incorporating some of these recommendations and further exploring variability at the base of the food web will potentially provide greater insights into consumer–resource coupling in running waters and more robust conclusions about food web structure and energy flow in these dynamic systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Movement of invertebrates among large rivers, tributaries, and floodplain lakes or dispersal of adult aquatic insects from riverine or floodplain habitats may provide important subsidies to food webs in receiving habitats. Intensive sampling at habitat interfaces and artificial labelling are two approaches to assess freshwater invertebrate dispersal, but these are difficult to implement at a landscape scale. Natural chemical tracers have been used to track dispersal of fishes and marine invertebrates, but the potential applicability of stable isotope ratios as natural tracers of invertebrate dispersal in freshwater environments has not been assessed. We evaluated stable hydrogen and oxygen isotopes (δD and δ18O) as natural markers of source environment and dispersal of macroinvertebrates in the middle Mississippi River, tributaries and floodplain wetlands. Water and invertebrates were collected from 12 sites during 2007–2008. Water δD and δ18O differed among the river, its tributaries, and floodplain wetlands and were strongly correlated with invertebrate δD and δ18O. Variability in invertebrate δ18O rendered it ineffective as an indicator of invertebrate source environment. Mean δD of Mississippi River invertebrates differed from δD of invertebrates from floodplain wetlands; δD distinguished invertebrates from these two environments with >80% accuracy. Neither δD nor δ18O of aquatic insects changed following emergence from their natal site. Preservation method (ethanol or freezing) did not affect invertebrate δD or δ18O. Invertebrate δD may be a useful natural tracer of natal environment and dispersal in the Mississippi River‐floodplain ecosystem and other freshwater systems where spatial variation in water δD is present. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The rehabilitation of lowland rivers subjected to channelization and artificial levee construction should attempt to improve habitat heterogeneity and diversity of floodplain hydrological connectivity. However, rehabilitation efforts rarely consider the importance of variable lateral hydrological connectivity between floodplain waterbodies and main river channels (ranging from those permanently connected to those temporarily connected during river level rises), instead focusing on increasing individual floodplain waterbody connectivity. This study investigated the young‐of‐the‐year (YoY) fish communities in 10 artificial floodplain waterbodies of variable hydrological connectivity with the river Trent, England, between May and November 2006, inclusive. Floodplain waterbody connectivity to the main river was positively correlated with the number of species captured (alpha diversity), Shannon–Wiener diversity, Margalef's species richness index and the relative abundance of rheophilic species and negatively correlated with species turnover (beta diversity). YoY fish communities in poorly connected water bodies were most dissimilar to riverine communities. The results demonstrate the importance of variable lateral connectivity between artificial floodplain waterbodies and main river channels when rehabilitating lowland river fish communities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The identification of the dominant sources of carbon supporting consumer biomass in aquatic food webs is often difficult but essential to understanding the limits to aquatic secondary production. Stable isotope analysis (SIA) is a powerful tool to estimate the contribution of different sources to consumers, but most food web studies using this approach limit analyses to a few key consumer taxa rather than measuring biomass‐weighted contribution of sources to the entire community. Here we combined stable isotope analysis with standardized measurements of abundance and biomass of fishes and invertebrates in seven waterholes of a wet–dry tropical river sampled early and late in the dry season. We showed that periphyton (as opposed to phytoplankton and terrestrial C3 plant detritus) was responsible for most standing fish biomass (range 42%–97%), whereas benthic invertebrates were reliant on a mixture of the three sources (range 26%–100%). Furthermore, larger, older fishes at high trophic levels (catfish Neoarius spp., sleepy cod Oxyeleotris lineaolatus and barramundi Lates calcarifer) were supported almost exclusively by periphyton. Phytoplankton and detritus supported a considerable biomass of benthic and pelagic invertebrates, but only in taxa that occupied low trophic levels (e.g. snails). These measurements provide further evidence that although periphyton is relatively inconspicuous relative to other sources, it contributes disproportionately to metazoan biomass in wet–dry tropical rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
We examined factors that influence the energy base of Great Lakes coastal wetland food webs across a basin-wide gradient of landscape disturbance. Wetland nutrient concentrations were positively correlated with a principal components-based metric of agricultural practices. Hydraulic residence time influenced the energy base of wetland food webs, with high residence-time systems based mostly on plankton and low residence-time systems based mostly upon benthos. In systems with plankton, the importance of planktonic carbon to the resident fish community generally increased with residence time. A stronger relationship was apparent with an index of nutrient loading that combined residence time and nutrient concentration as the predictor (R2 = 0.289, p = 0.026). Shifts toward plankton-based food webs occurred at relatively low levels of loading. In riverine wetlands without plankton, contributions of detrital carbon to fish communities decreased significantly in response to watershed disturbance that reflected nutrient loading. In a third class of wetlands the wetland-resident fish communities were not entirely supported by within-wetland carbon sources and were significantly subsidized by nearshore habitats, which provided 35 (± 22) to 73 (± 9) % of fish community carbon. When lake-run migrant fish were included in the analyses, nearshore subsidies to all 30 wetland food webs ranged from 3 (± 2) to 79 (± 12) %. We obtained similar ranges when examining nearshore contributions to a single wetland species, northern pike. These results illustrate the spatial scale and the degree to which the energetics of coastal wetland food webs are influenced by interactions with their watersheds and Great Lakes.  相似文献   

9.
Energy and resource fluxes between terrestrial and aquatic habitats of river flood plains can have reciprocal influences on food webs. Floodplain spring brooks may contain high densities (>1 m−2) of juvenile fish even when aquatic food resources appear to be low. A likely explanation is the allochthonous energy subsidy from riparian vegetation (e.g. leaves, invertebrates). To quantify this relationship in a rich salmon river ecosystem, we measured the temporal and spatial flux of terrestrial invertebrate and aquatic food resources in relation to diets of the two most abundant salmonid species in two spring brooks within early (<20 years) and late (>50 years) successional riparia on an expansive coastal flood plain of the Kol River, Kamchatka. Standing crops of benthic invertebrates and density of drifting invertebrates (dry mass) were fairly low (<4 g m−2 and <1 mg m−3, respectively) at both sites, but annual average terrestrial invertebrate input among sites was 22.2 ± 0.1 mg m−2 day−1. On average 68% of the coho salmon diet was of terrestrial origin, contrasting with 13% for Dolly Varden char at both sites, thus showing resource partitioning. Diet varied temporally and spatially with prey availability. Specifically, larvae of a weevil (Curculionidae) feeding on willow catkins were a dominant diet item for coho in the spring but only at the early successional site; Dolly Varden also ate these weevils but aquatic invertebrates continued to dominate their diets, further demonstrating behavioural segregation. The results show the importance of channel‐floodplain connectivity to management and conservation of salmon rivers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
As anthropogenic impacts on riverine ecosystems expand, both aquatic and terrestrial ecosystems are influenced over large spatiotemporal scales. We predicted how riparian bird communities changed in response to long‐term changes in floodplain landscapes such as woodland expansion (i.e. rapid increases in vegetation cover on gravel bars and the progress of vegetation succession due to a decrease in the frequency and magnitude of flood disturbance). To test the hypothesis that woodland expansion after dam construction reduces the abundance of gravel bar‐nesting birds and increases the abundance of forest‐nesting birds, we estimated historical changes between past and present bird abundances using species distribution models across multiple rivers that were either unregulated or regulated by dams. We created past and present vegetation maps from remote sensing images and used habitat quantities as explanatory variables in the species distribution models. As we hypothesized, the estimated abundance of gravel bar‐nesting birds decreased and that of forest‐nesting birds increased because of woodland expansion in some regulated rivers. This suggests that anthropogenic alterations of riverine conditions (e.g. dam construction) can affect terrestrial ecosystems (e.g. riparian bird communities) through changes in floodplains (e.g. woodland expansion). In addition, our findings highlight the efficacy of combining spatial and temporal analyses when examining long‐term ecological dynamics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Many anthropogenic inputs, such as municipal wastewater effluents (MWWEs), affect stable isotope signatures (δ13C and δ15N) at the base of exposed food webs creating spatial patterns reflecting their incorporation into aquatic food webs. The Grand River in southern Ontario, Canada, is a heavily modified, rapidly urbanizing river that assimilates wastewater from 30 municipal wastewater treatment plants. Stable isotope analysis was applied to resident aquatic invertebrates and fish influenced by three different wastewater outfalls in early, middle, and late summer to determine how values shifted seasonally and with differing effluent quality. There was a slight increase in δ13C in both invertebrates and fish in late summer downstream from the three outfalls, but it is difficult to separate effects of the effluents from downstream gradients. Downstream of two of the three outfalls, the δ15N tended to increase relative to upstream, while the remaining effluent, of the poorest quality, decreased δ15N values of both invertebrates and fish. Spatial trends in stable isotopes became more pronounced as the summer progressed with the greatest between‐site differences occurring in late summer. This study reflects the complex nutrient dynamics associated with MWWE inputs to rivers and contributes to our understanding and application of stable isotope analysis in impacted lotic ecosystems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
An understanding of the factors controlling the permanent and episodic links between the main stem of a river and the ecosystems of its alluvial floodplain is necessary for evaluating the influence of modern river processes on floodplain ecology and habitat diversity and for the successful implementation of flow regimes that meet human needs for water in a manner that sustains the ecological integrity of affected systems. In this study, we examined relationships between river hydrology and lateral hydrological connectivity, which is crucial to directing fluxes of water, material, and organisms into and across a floodplain. We did so by translating measures of river discharge for the Congaree River into high resolution maps of flood conditions for the floodplain at Congaree National Park using a 2D flood inundation model. Utilizing a graph network approach, we then analyzed the connectivity of a key wetland ecosystem, Taxodium‐Nyssa forested swamps, to the main stem river and to each other under different flows. Our results underscore that floodplain connectivity is initiated at sub‐bankfull discharges and does not depend on levee overtopping, while also clarifying that various sources of connectivity are triggered at different flow levels in specific reaches. Further, our findings demonstrate the sensitive and non‐linear response of floodplain connectivity to river flows and provide useful information to facilitate the management of flood processes in the Congaree River watershed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Food webs in riparian corridors are increasingly viewed as embedded in complex riverine landscapes characterized by an amalgam of aquatic, semi‐aquatic, and terrestrial habitats. However, the influence of riverine landscape pattern on trophic dynamics of riparian consumers remains largely unknown. We used naturally abundant stable isotope ratios (δ15N) to compare trophic structure of ants (Formica subsericea) among riparian patch types (crop, grass/herbaceous, gravel bar, lawn, mudflat, shrub, swamp, and woody vegetation) at 12 riverine landscapes distributed along an urban‐rural landscape gradient of the Scioto River, Ohio, USA. We expected that the diet of F. subsericea, a common generalist consumer, would reflect local prey availability and thus differences in trophic dynamics among patch types. Mean ant δ15N was higher in crop patches than in any other patch type, and was lowest in grass/herbaceous, lawn, shrub, and woody vegetation patches, suggesting that patch type was associated with trophic position of F. subsericea. We also found that the range of δ15N, and thus trophic breadth, was significantly different by patch type, with woody vegetation exhibiting the greatest spread. Variability in canopy, tree and shrub cover, and the degree of urban development was positively correlated with δ15N range (R2 = 0.78), pointing to the role of habitat structure in mediating trophic breadth of riparian ants. These findings provide evidence that riverine landscape pattern can strongly influence trophic dynamics of riparian arthropods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Natural resource managers across Australia intend to promote healthy floodplain lake ecosystems with rich diversity and composition of biota because such ecosystems provide economically valuable services to society. However, management practice of these floodplain lake ecosystems is impeded by confounding effects of anthropogenic impacts and natural climate variability in recent decades. Yet, there are a few potential biological markers available that profoundly respond to ecological effects of climate change and human disturbances. Cladoceran zooplankton plays an intermediary role in food web dynamics. They show distinct responses to changes in temperature and environmental perturbations, such as acidification, nutrient loading and salinization. The effects of temperature and land‐use changes on food web dynamics and water quality, in particular, are major concerns for shallow lowland large river floodplain lakes management in Australia. Information on zooplankton assemblages and diversity can help increase our understanding of ecological processes in a wide range of environmental exposures. The study of cladoceran fossils and their ephippia preserved in floodplain lake sediment has substantially furthered our understanding of species–environment relationships at different temporal and spatial scales and allowed us to develop powerful inference models for degraded floodplain lake ecosystems. This consequently defines a benchmark of a shift from a naturally intact ecosystem to an ecologically poor regime. In this paper, I have made an attempt to persuade wetland managers through application of contemporary and palaeocladoceran communities to improve management practice of floodplain lake ecosystems in Australia by providing a range of examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Lake Winnipeg has undergone rapid eutrophication over the last several decades with a large portion of the associated nutrient loads delivered via the Red River. Consequently, subcatchments of the Red River Valley (RRV) are priorities for nutrient management, an aim that requires identification of key nutrient sources to stream food webs. We identified the primary sources of nitrogen to food webs of rural streams of the RRV, as well as variation in nitrogen input between spring and summer. We measured δ15N of particulate organic matter (POM) and collector-gatherer invertebrates collected in spring and summer from 20 subcatchments, which exhibited a range of agricultural intensity and size of municipal wastewater lagoons. δ15N values of POM and collector-gatherer invertebrates were best predicted by the presence of wastewater treatment lagoons, with δ15N values increasing with the number of people served by lagoons in spring and summer. When present, wastewater contributed a greater proportion of nitrogen to stream food webs than agricultural sources. Waste sources also had a greater relative contribution to food webs in summer than spring. Despite wastewater lagoons releasing nitrogen in short-term, pulsed discharges, the influence of wastewater on food web nitrogen persisted from the summer release into the following spring. Based on the observed importance of wastewater as a source of nitrogen to stream food webs, we recommend management agencies consider additional actions to reduce nutrient losses from wastewater treatment facilities as well as agricultural lands to more effectively protect aquatic ecosystems.  相似文献   

16.
Rivermouth ecosystems are areas where tributary waters mix with lentic near-shore waters and provide habitat for many Laurentian Great Lakes fish and wildlife species. Rivermouths are the interface between terrestrial activities that influence rivers and the ecologically important nearshore. Stable isotopes of nitrogen (N) and carbon (C) in consumers were measured from a range of rivermouths systems to address two questions: 1) What is the effect of rivermouth ecosystems and land cover on the isotopic composition of N available to rivermouth consumers? 2) Are rivermouth consumers composed of lake-like or river-like C? For question 1, data suggest that strong relationships between watershed agriculture and consumer N are weakened or eliminated at the rivermouth, in favor of stronger relationships between consumer N and depositional areas that may favor denitrification. For question 2, despite apparently large riverine inputs, consumers only occasionally appear river-like. More often consumers seem to incorporate large amounts of C from either the nearshore or primary production within the rivermouth itself. Rivermouths appear to be active C and N processing environments, thus necessitating their explicit incorporation into models estimating nearshore loading and possibly contributing to their importance to Great Lakes biota.  相似文献   

17.
The dynamic nature of alluvial floodplain rivers is a function of flow and sediment regimes interacting with the physiographic features and vegetation cover of the landscape. During seasonal inundation, the flood pulse forms a ‘moving littoral’ that traverses the plain, increasing productivity and enhancing connectivity. The range of spatio-temporal connectivity between different biotopes, coupled with variable levels of natural disturbance, determine successional patterns and habitat heterogeneity that are responsible for maintaining the ecological integrity of floodplain river systems. Flow regulation by dams, often compounded by other modifications such as levee construction, normally results in reduced connectivity and altered successional trajectories in downstream reaches. Flood peaks are typically reduced by river regulation, which reduces the frequency and extent of floodplain inundation. A reduction in channel-forming flows reduces channel migration, an important phenomenon in maintaining high levels of habitat diversity across floodplains. The seasonal timing of floods may be shifted by flow regulation, with major ramifications for aquatic and terrestrial biota. Truncation of sediment transport may result in channel degradation for many kilometres downstream from a dam. Deepening of the channel lowers the water-table, which affects riparian vegetation dynamics and reduces the effective base level of tributaries, which results in rejuvenation and erosion. Ecological integrity in floodplain rivers is based in part on a diversity of water bodies with differing degrees of connectivity with the main river channel. Collectively, these water bodies occupy a wide range of successional stages, thereby forming a mosaic of habitat patches across the floodplain, This diversity is maintained by a balance between the trend toward terrestrialization and flow disturbances that renew connectivity and reset successional sequences. To counter the influence of river regulation, restoration efforts should focus on reestablishing dynamic connectivity between the channel and floodplain water bodies.  相似文献   

18.
Understanding longitudinal trends in the processing of carbon in rivers represents a much conceptualised, but infrequently tested, issue in aquatic ecology. In this study, we conducted concurrent longitudinal examinations of three very different rivers in eastern Australia to determine whether general principles in river functioning exist across broad geographic and hydrologic scales. Specifically, we examined trends in ambient basic water chemistry, nutrient concentrations, dissolved organic carbon (DOC), extracellular enzymes and food web structure and functioning and conducted bioassays to examine the degree to which DOC and nutrients limit heterotrophic bacterial respiration. These parameters revealed striking similarities across all sites. For metazoan communities, stable isotope analysis showed that algal carbon was the dominant basal resource utilised by consumers in all three rivers, suggesting that in‐stream primary producers strongly underpin trophic pathways regardless of the position within a catchment or catchment condition. Analyses of extracellular enzymes revealed that microbial communities are actively utilising DOC at all sites. In fact, heterotrophic microbial respiration was strongly limited by DOC at all sites, with nutrient additions resulting in only relatively minor increases in respiration. Ultimately, this study demonstrates that DOC and algal carbon are critically important drivers of ecosystem processes in Australian riverine ecosystems. Furthermore, across all of our sites and rivers, ambient nutrient concentrations did not influence carbon processing. The consistent longitudinal trends in river function identified in this study provide useful insights for catchment managers and modellers with respect to identifiying key principles that underpin ecosystem functioning in Australian rivers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The food webs for three Sri Lankan reservoirs, Minneriya (ancient and shallow), Udawalawe (young and shallow) and Victoria (young and deep), were compared. The species richness of the fish communities was highest in Minneriya (30 species), intermediate in Udawalawe (21 species) and lowest in Victoria (18 species). The fish species belonged to 11 families, with Cyprinidae dominating the community in terms of both abundance and species richness. The daily quantity of food consumed per fish species was used to distinguish weak from strong trophic interactions in these food webs. The fish community consumption pattern was characterized by a few strong interactions and many weak ones. The number of major consumers (i.e. contributing >5% of the total fish community consumption) for each reservoir was small and similar for all three reservoirs. Dawkinsia singhala and Amblypharyngodon melettinus were the two major consumers in all three reservoir food webs. Puntius chola was a major consumer in Minneriya and Victoria, although not in Udawalawe, where it fed less on detritus than for the other two food webs. The fish community fed mainly at the bottom of the food web, primarily on algae, macrophytes and detritus in all three reservoirs, with very little piscivory occurring. The average food‐web length was measured as the mean trophic index weighted for the consumption rates of the various fish populations that together comprised the fish community. The average food‐web length in these three Sri Lankan reservoirs relatively short, compared with most other tropical lake/reservoir food webs in Asia and Africa for which relevant data were available. Furthermore, traditionally unexploited species (Oreochromis mossambicus; O. niloticus), in contrast to species of commercial fisheries interest, are major role players in the trophic dynamics of reservoir ecosystems. Thus, based on this study, the potential of their exploitation should be considered in the management of reservoir fisheries.  相似文献   

20.
The Mississippi and Missouri Rivers experienced flooding in 1993 that fell outside the annual predictable flood period of spring and early summer. Flooding began in late June, peaked in late July (25 232 m3/s on the upper Mississippi and 21 240 m3/s on the Missouri) and remained at or near flood stage into October 1993. This study was performed to determine if disturbance by an unpredicted flood event would alter trophic dynamics of river–floodplain systems by creating shifts in the composition of organic matter available to consumers. The Ohio River, which did not flood during the same period, was examined for comparison. Stable isotopic ratios of carbon and nitrogen from samples collected in 1993 and 1994 were used to characterize potential food sources and determine linkages between food sources and invertebrate and fish consumers. Pairwise contrasts, performed separately for each river, indicated there were few interannual differences in δ13C and δ15N of organic matter sources and consumers. Between sample period (flood year versus normal water year) trends in both flooded rivers were similar to between‐year trends observed for the Ohio River. Trophic structure of the Mississippi and Ohio Rivers was similar in both years, with fine and ultra‐fine transported organic matter and dissolved organic matter representing the major sources of organic matter. Overlapping isotopic signatures in the Missouri River made tracking of sources through the consumers difficult, but similarities in δ13C and δ15N between years indicated trophic structure did not change in response to the flood. The results suggest that consumers continued to rely on sources of organic matter that would be used in the absence of the unpredicted 1993 flood. It is proposed that trophic structure did not change in response to flooding in the Mississippi and Missouri Rivers because both rivers exhibited the same trends observed in the Ohio River. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号