首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As a result of the increased wind power penetration, there are increased requirements for robustness of the wind farms during disturbances and faults. The wind farms are required to stay connected during short grid faults, and also, the disturbances as a result of internal faults should be minimized. In this paper, the fault ride‐through properties during external faults for a wind farm with an internal direct current (DC) grid are investigated. A safe detection of the fault is derived, as well as the reconnection procedure after the fault has been cleared. Also, the operation during internal faults has been investigated, focusing on the faults in the DC bus. It has been shown that the wind farm with an internal DC grid can operate through faults in the external grid and reconnect well within the requirements stated in the grid codes. Further, methods for detection of internal faults are derived, and it was shown that a faulted part can be disconnected and the non‐faulted parts can be back in operation within 100 ms using a DC breaker in each radial and within 300 ms without DC breakers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A control strategy for compensating AC network voltage unbalance using doubly fed induction generator (DFIG)-based wind farms is presented. A complete DFIG dynamic model containing both the rotor and grid side converters is used to accurately describe the average and ripple components of active/reactive power, electromagnetic torque and DC bus voltage, under unbalanced conditions. The principle of using DFIG systems to compensate grid voltage unbalance by injecting negative sequence current into the AC system is described. The injected negative sequence current can be provided by either the grid side or the rotor side converters. Various methods for coordinating these two converters are discussed and their respective impacts on power and torque oscillations are described. The validity of the proposed control strategy is demonstrated by simulations on a 30 MW DFIG-based wind farm using Matlab/Simulink during 2 and 4% voltage unbalances. The proposed compensation strategy can not only ensure reliable operation of the wind generators by restricting torque, DC link voltage and power oscillations, but also enable DFIG-based wind farms to contribute to rebalancing the connected network.  相似文献   

3.
Fault ride through of fully rated converter wind turbines in an offshore wind farm connected to onshore network via either high voltage AC (HVAC) or high voltage DC (HVDC) transmission is described. Control of the generators and the grid side converters is shown using vector control techniques. A de-loading scheme was used to protect the wind turbine DC link capacitors from over voltage. How de-loading of each generator aids the fault ride through of the wind farm connected through HVAC transmission is demonstrated. The voltage recovery of the AC network during the fault was enhanced by increasing the reactive power current of the wind turbine grid side converter. A practical fault ride through protection scheme for a wind farm connected through an HVDC link is to employ a chopper circuit on the HVDC link. Two alternatives to this approach are also discussed. The first involves de-loading the wind farm on detection of the fault, which requires communication of the fault condition to each wind turbine of the wind farm. The second scheme avoids this complex communication requirement by transferring the fault condition via control of the HVDC link to the offshore converter. The fault performances of the three schemes are simulated and the results were used to assess their respective capabilities.  相似文献   

4.
直驱型风力发电变流器低压穿越控制策略研究   总被引:1,自引:0,他引:1  
研究了直驱型风力发电变流器系统低压穿越控制策略。首先提出了一种对三相电量进行快速准确的正负序分离软件锁相环。在此基础上,为消除直流电压的二次谐波,采用正、负序双电流内环控制不对称运行控制策略。正负序分离软件锁相环采用了正负序级联延时信号消除法,能够实现对三相电压电流基波正负序分量在同步旋转坐标下的快速提取,并且通过选择不同的参数,可以滤除任何次数谐波的干扰。该方法无需采用滤波器,从而同时具备了稳态精确性和动态快速性。现场实验结果表明,该软件锁相环为三相并网型风力发电变流器在电网发生跌落及谐波畸变时提供了良好运行控制提供保障,正负序双电流内环不对称运行的控制策略保证了在电网电压不对称跌落时的正负序分离控制,消除了直流电压的二次谐波。  相似文献   

5.
Emphasis in this article is on the design of a co‐ordinated voltage control strategy for doubly fed induction generator (DFIG) wind turbines that enhances their capability to provide grid support during grid faults. In contrast to its very good performance in normal operation, the DFIG wind turbine concept is quite sensitive to grid faults and requires special power converter protection. The fault ride‐through and grid support capabilities of the DFIG address therefore primarily the design of DFIG wind turbine control with special focus on power converter protection and voltage control issues. A voltage control strategy is designed and implemented in this article, based on the idea that both converters of the DFIG (i.e. rotor‐side converter and grid‐side converter) participate in the grid voltage control in a co‐ordinated manner. By default the grid voltage is controlled by the rotor‐side converter as long as it is not blocked by the protection system, otherwise the grid‐side converter takes over the voltage control. Moreover, the article presents a DFIG wind farm model equipped with a grid fault protection system and the described co‐ordinated voltage control. The whole DFIG wind farm model is implemented in the power system simulation toolbox PowerFactory DIgSILENT. The DFIG wind farm ride‐through capability and contribution to voltage control in the power system are assessed and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a DFIG wind farm equipped with voltage control can help a nearby active stall wind farm to ride through a grid fault, without implementation of any additional ride‐through control strategy in the active stall wind farm. Copyright © 2006 John Wiley &Sons, Ltd.  相似文献   

6.
In recent years, the use of electrolyzers to produce cleanly and efficiently hydrogen from renewable energy sources (i.e. wind turbines, photovoltaic) has taken advantage of a growing interest from researchers and industrial. Similarly to fuel cells, DC/DC converters are needed to interface the DC bus with the electrolyzer. Usually, electrolyzers require a low DC voltage to produce hydrogen from water. For this reason, a DC/DC buck converter is generally used for this purpose. However, other DC/DC converter topologies can be used depending on the feature of the electrolyzer and electrical grid as well. The main purpose of this paper is to present the current state-of-the-art of DC/DC converter topologies which can be combined with electrolyzers. The different DC/DC converter topologies are compared in terms of output current ripple reduction, conversion ratio, energy efficiency, and power switch fault-tolerance. Besides, remarks on the state-of-the-art and remaining key issues regarding DC/DC converters are provided.  相似文献   

7.
基于模糊PI控制的海上风电柔性直流输电整流器研究   总被引:1,自引:0,他引:1  
为提高海上风电柔性直流输电电压等级,抑制直流侧电压跌落和闪变,将三相电压源变流器用于送端整流器。采用多个功率单元级联的拓扑结构,电流内环采用PI解耦控制、电压外环模糊PI调节双闭环控制方式。分析了变流器数学模型,建立了MATLAB/Simulink仿真模型,实现了电压级联输出.在线PI参数整定。仿真结果验证了该系统在海上风电柔性直流输电应用中的有效性。  相似文献   

8.
V. Azbe  R. Mihalic 《Renewable Energy》2006,31(14):2370-2384
This article describes a direct current (DC) isolated network that is infed with distributed generation from renewable sources and cogeneration units. The sources are connected to the network via DC/DC converters to keep the voltage within a defined range and to ensure the required power flow. The consumption is directly connected to the DC network, without any DC/DC converter. The storage is located at a single point in the network. A simulation analysis based on a DC-network model shows that it is possible to operate a DC network with standard elements used for the generation side as well as for the consumption side. The key elements are the DC/DC converters, which control the voltage of the network and optimize the operation of the sources.  相似文献   

9.
针对直流微电网传统的下垂控制微源间功率分配不均和直流母线电压偏移等问题,提出了一种基于理想电流的自调节下垂控制,通过低速通信网络建立微源间的信息传递,联合调整下垂曲线系数法与平移下垂曲线法使系统具有更高的自由度和更好的调节性能,下垂系数随公共负载、线路阻抗和本地负载的变化迅速响应而自动调节,提高微源功率分配精度的同时改善了直流母线电压质量。最后在Matlab/Simulink中搭建两台变换器并联运行的试验模型,对基于理想电流的自调节下垂控制分别在低速通信网络通信通道故障和本地负载不平衡的工况下进行试验验证,其结果证明了该控制方法的可行性与有效性。  相似文献   

10.
Offshore wind power plants (WPPs) built near each other but far from shore usually connect to the main grid by a common high‐voltage DC (HVDC) transmission system. In the resulting decoupled offshore grid, the wind turbine converters and the high‐voltage DC voltage‐source converter share the ability to inject or absorb reactive power. The overall reactive power control dispatch influences the power flows in the grid and hence the associated power losses. This paper evaluates the respective power losses in HVDC‐connected WPP clusters when applying 5 different reactive power control strategies. The case study is made for a 1.2‐GW–rated cluster comprising 3 WPP and is implemented in a combined load flow and converter loss model. A large set of feasible operating points for the system is analyzed for each strategy. The results show that a selection of simulations with equal wind speeds is sufficient for the annual energy production comparison. It is found that the continuous operation of the WPPs with unity power factor has a superior performance with low communication requirements compared with the other conventional strategies. The optimization‐based strategy, which is developed in this article, allows a further reduction of losses mainly because of the higher offshore grid voltage level imposed by the high‐voltage DC voltage‐source converter. Reactive power control in HVDC‐connected WPP clusters change significantly the overall power losses of the system, which depend rather on the total sum of the injected active power than on the variance of wind speeds inside the cluster.  相似文献   

11.
为了更好地进行能源调配,我国正开始建设坚强智能电网,直流输电控制系统应实现更多系统层的控制功能。智能电网中的直流输电系统的根本控制目标是保障电网整体的自适应和自愈性。为了实现这一目标,需要从直流输电控制的可观测性入手增加控制观测量,引入合理的集控、协调控制理论作为支撑,完善控制输出环节,实现对电网的有效控制。控制的实时性和决策能力是智能化直流输电控制的核心。从可观性、可控性、实时性、自适应性角度分析,提出了面向电网稳定性的多智能体智能化直流输电控制技术框架,为直流输电系统级控制技术的发展提出了思路。  相似文献   

12.
Injection of wind power into an electric grid affects the voltage quality. As the voltage quality must be within certain limits to comply with utility requirements, the effect should be assessed prior to installation. To assess the effect, knowledge about the electrical characteristics of the wind turbines is needed or else the result could easily be an inappropriate design of the grid connection. The electrical characteristics of wind turbines are manufacturer‐specific but not site‐specific. This means that, having the actual parameter values for a specific wind turbine, the expected impact of the wind turbine type on voltage quality when deployed at a specific site, possibly as a group of wind turbines, can be calculated. The methodology for this is explained and illustrated by case studies considering a 5 × 750 kW wind farm on a 22 kV distribution feeder. The detailed analysis suggests that the wind farm capacity can be operated at the grid without causing unacceptable voltage quality. For comparison, a simplified design criterion is considered assuming that the wind farm is only allowed to cause a voltage increment of 1%. According to this criterion, only a very limited wind power capacity would be allowed. Measurements confirm, however, the suggestion of the detailed analysis, and it is concluded that a simplified design criterion such as the ‘1% rule’ should not be used for dimensioning the grid connection of wind farms. Rather, this article suggests a systematic approach including assessment of slow voltage variations, flicker, voltage dips and harmonics, possibly supported by more detailed analyses, e.g. system stability if the wind farm is large or the grid is very weak, and impact on grid frequency in systems where wind power covers a high fraction of the load, i.e. most relevant for isolated systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Due to low investment cost and high reliability, a new scheme called DR-HVDC (Diode Rectifier based HVDC) transmission was recently proposed for grid integration of large offshore wind farms. However, in this scheme, the application of conventional control strategies for stability operation face several challenges due to the uncontrollability of the DR. In this paper, a coordinated control strategy of offshore wind farms using the DR-HVDC transmission technology to connect with the onshore grid, is investigated. A novel coordinated control strategy for DR-HVDC is proposed based on the analysis of the DC current control ability of the full-bridge-based modular multilevel converter (FB-MMC) at the onshore station and the input and output characteristics of the diode rectifier at the offshore. Considering the characteristics of operation stability and decoupling between reactive power and active power, a simplified design based on double-loop droop control for offshore AC voltage is proposed after power flow and voltage–current (I–V) characteristics of the offshore wind farm being analyzed. Furthermore, the impact of onshore AC fault to offshore wind farm is analyzed, and a fast fault detection and protection strategy without relying on communication is proposed. Case studies carried out by PSCAD/EMTDC verify the effectiveness of the proposed control strategy for the start up, power fluctuation, and onshore and offshore fault conditions.  相似文献   

14.
计及集电线路和内部损耗的风电场模型分析比较   总被引:1,自引:0,他引:1  
风电的接入会改变电网原有的潮流分布而对电网电压稳定性产生影响。潮流计算作为风电接入系统研究的基础,为得到其计算结果的准确性而建立风电场稳态模型具有重要的意义。以往的风电场系统潮流计算都是把整个风电场等效为一个风机处理,并没有详细讨论风电场内部的电网结构,潮流计算无法深入到风电场内部。在DigSILENT/PowerFactory中建立了改进的潮流计算模型,充分考虑了由双馈异步发电机组成的大型风电场的集电系统以及风电机组间电缆的功率损耗对稳态潮流计算的影响。  相似文献   

15.
This paper proposes a system of supervision and operation of a new structure wherein a large wind farm is connected to an electrical grid. The farm is managed in such a manner that it can produce the power needed by the grid system. The supervision algorithm is used to distribute the active and reactive power references to the wind turbines proportionally. Based on the aerodynamic power and wind speed of each turbine, the active and reactive power references are produced individually. By using the vector field oriented control, each doubly fed induction generator is controlled through the rotor, which is connected to the two-level pulse width modulation converter. The close loop control is used to provide a constant DC voltage using a five-level neutral point clamped converter. The five-level neutral point clamped converter allows also the adaptation of the voltage level to the electrical grid with better resolution waveform. The analysis of the simulation results shows the effectiveness of the proposed system.  相似文献   

16.
针对采用蓄电池提供直流母线电压难于满足波能装置装机容量不断增长需求的问题,提出基于逆变器直流电压模式的多液压发电机组并网接入方法。逆变器为液压发电机组直接提供直流母线电压,组建成波能装置无蓄电池组支撑的直流纳电网。建立了逆变器直流电压模式电路拓扑和直流电压外环控制回路。通过多液压发电机组波能装置基于逆变器直流电压模式仿真试验,验证了无蓄电池组波能装置并网接入方法的可行性。该研究成果已应用到500 kW“长山号”波能装置中,为大功率波能装置并网系统研究奠定了基础。  相似文献   

17.
改善风电并网电能质量的飞轮储能系统能量管理系统设计   总被引:1,自引:0,他引:1  
设计了应用于改善电网电能质量场景下飞轮储能系统的双层结构能量管理系统,其中能量管理系统的上层——决策管理层利用模糊算法,考虑飞轮储能系统状态和平抑风电功率波动需求来确定飞轮储能装置的充放电功率参考值,下层——调度控制层通过双环控制背靠背双PWM变流器实现飞轮储能与电网间的功率交换。在Matlab/Simulink下仿真分析飞轮储能的运行状态和比较风电场采用飞轮储能调节有功功率前后的公共连接点(point of common coupling,PCC)处电压波动,仿真结果验证了飞轮储能系统能量管理系统的有效性,可提高储能装置的利用效率,改善电能质量。  相似文献   

18.
智能电网是未来电力系统发展的重要方向。与传统电网相比,智能电网涉及到大量的新型发输电设备,必然会给大电网可靠性的评估带来影响。以计及储能装置的风力发电、高压/特高压直流输电、柔性直流输电系统、柔性交流输电技术、电动汽车等技术为例,分析了其对大电网可靠性的影响,以及新技术在接入电网时应注意的问题,最后结合智能电网的发展进程,提出了未来大电网可靠性评估领域重点发展方向。  相似文献   

19.
Advanced experimentation with wind energy conversion systems is described. The real time multivariable control of a wind turbine is designed for investigation of theoretical concepts and their physical implementation. The control system includes a speed controller and a disturbance estimator for enhanced robustness of the control system. In order to provide students with deeper understanding of wind energy and energy extraction, a maximum power point tracking algorithm is developed and integrated into the control system. The multivariable control system is implemented in a small wind turbine laboratory system. A power electronic interface is based on two DC–DC converters: a buck converter for control of the speed and a boost converter controlling the load voltage. Experimental results demonstrate effectiveness of the multivariable control system for a wind turbine providing maximum power extraction. The experiment can be reconfigured for teaching various control concepts to both undergraduate and graduate students.  相似文献   

20.
This paper presents modeling and control of a photovoltaic generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation current and thermal voltage) using Newton-Raphston and the gradient algorithm. The electrical energy from a PVG is transferred to the grid via two static converters (DC/DC and DC/AC). The objective of the proposed control strategy is to maximize energy captured from the PVG. The adapted control law for extracting maximum power from the PVG is based on the incremental conductance algorithm. The developed algorithm has the capability of searching the maximum photovoltaic power under variable irradiation and temperature. To control the DC/AC inverter, an intelligent system based on two structures is constructed: a current source control structure and a voltage source control structure. The system has been validated by numerical simulation using data obtained from the PVG installed in the laboratory research (INSAT, Tunisia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号