首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the visualization of droplet formation in co-flowing microfluidic devices using food-grade aqueous biopolymer–surfactant solutions as the dispersed droplet phase and sunflower oil as the continuous phase. Microparticle image velocimetry and streak imaging techniques are utilized to simultaneously recover the velocity profiles both within and around the dispersed phase during droplet formation and detachment. Different breakup mechanisms are found for Newtonian–Newtonian and non-Newtonian–Newtonian model water-in-oil emulsions, emphasizing the influence of process and material parameters such as the flow rates of both phases, interfacial tension, and the elastic properties of the non-Newtonian droplet phase on the droplet formation detachment dynamics.  相似文献   

2.
Droplet breakup in systems with either a viscoelastic matrix or a viscoelastic droplet is studied microscopically in bulk and confined shear flow, using a parallel plate counter rotating shear flow cell. The ratio of droplet diameter to gap spacing is systematically varied between 0.1 and 0.85. In bulk shear flow, the effects of matrix and droplet viscoelasticity on the critical capillary number for breakup are very moderate under the studied conditions. However, in confined conditions a profoundly different behaviour is observed: the critical capillary numbers of a viscoelastic droplet are similar to those of a Newtonian droplet, whereas matrix viscoelasticity causes breakup at a much lower capillary number. The critical capillary numbers are compared with the predictions of a phenomenological model by Minale et al. (Langmuir 26:126–132, 2010); the model results are in qualitative disagreement with the experimental data. It is also found that the critical dimensionless droplet length, the critical capillary number, and the dimensionless droplet length at breakup show a similar dependency on confinement ratio. As a result, confined droplets in a viscoelastic matrix have a smaller dimensionless length at breakup than droplets in a Newtonian matrix, which affects the breakup mode. Whereas confined droplets in a Newtonian matrix can break up into multiple parts, only two daughter droplets are obtained after breakup in a viscoelastic matrix, up to very large confinement ratios.  相似文献   

3.
Although many aspects of microchannel emulsification have been covered in literature, one major uncharted area is the effect of viscosity of both phases on droplet size in the stable droplet generation regime. It is expected that for droplet formation to take place, the inflow of the continuous phase should be sufficiently fast compared to the outflow of the liquid that is forming the droplet. The ratio of the viscosities was therefore varied by using a range of continuous and dispersed phases, both experimentally and computationally. At high viscosity ratio (η d/η c), the droplet size is constant; the inflow of the continuous phase is fast compared to the outflow of the dispersed phase. At lower ratios, the droplet diameter increases, until a viscosity ratio is reached at which droplet formation is no longer possible (the minimal ratio). This was confirmed and elucidated through CFD simulations. The limiting value is shown to be a function of the microchannel design, and this should be adapted to the viscosity of the two fluids that need to be emulsified.  相似文献   

4.
Water-in-oil emulsions were produced in microchannels with Y- and T-junction geometries by individual droplet generation. For each microchannel configuration, the effect of the fluids and interface properties as well as of the process conditions was evaluated. The size of the droplets depended mainly on the relative velocity between continuous and dispersed phases and the relative fluid viscosity between phases. Those variables were related to the shear stress between the phases, which caused the droplet detachment. In addition, the interfacial forces played a minor role in Y-junction, and they had no effect in the droplets formation in T-junction microchannels. In Y-junction, a large variation in the droplet size was observed, depending on the system composition and the operating conditions. At low relative velocity and fluid viscosity, no droplets were generated. In contrast, the process in T-junction resulted in a lower variation of droplets size and the droplets were formed even at less favorable conditions. Such results indicate that the knowledge of the mechanism of droplets generation in each microchannel geometry makes it possible to choose the appropriate configuration according to the type of fluid, and the operating conditions can be adjusted to obtain the desired final emulsion.  相似文献   

5.
Micro-droplet formation from an aperture with a diameter of micrometers is numerically investigated under the cross-flow conditions of an experimental microchannel emulsification process. The process involves dispersing an oil phase into continuous phase fluid through a microchannel wall made of apertured substrate. Cross-flow in the microchannel is of non-Newtonian nature, which is included in the simulations. Micro-droplets of diameter 0.76–30 μm are obtained from the simulations for the apertures of diameter 0.1–10.0 μm. The simulation results show that rheology of the bulk liquid flow greatly affects the formation and size of droplets and that dispersed micro-droplets are formed by two different breakup mechanisms: in dripping regime and in jetting regime characterized by capillary number Ca. Relations between droplet size, aperture opening size, interfacial tension, bulk flow rheology, and disperse phase flow rate are discussed based on the simulation and the experimental results. Data and models from literature on membrane emulsification and T-junction droplet formation processes are discussed and compared with the present results. Detailed force balance models are discussed. Scaling factor for predicting droplet size is suggested.  相似文献   

6.
Microchannel (MC) emulsification is a promising technique to produce monodisperse emulsions by spontaneous interfacial-tension-driven droplet generation. The purpose of this study was to systematically characterize the effect of temperature on droplet generation by MC emulsification, which is a major uncharted area. The temperature of an MC emulsification module was controlled between 10 and 70°C. Refined soybean oil was used as the dispersed phase and a Milli-Q water solution containing sodium dodecyl sulfate (1 wt%) as the continuous phase. Monodisperse oil-in-water (O/W) emulsions with a coefficient of variation below 4% were produced, and at all the operating temperatures, their average droplet diameter ranged from 32 to 38 μm. We also investigated the effect of flow velocity of the dispersed phase on droplet generation characteristics. The maximum droplet generation rate (frequency) from a channel at 70°C exceeded that at 10°C by 8.1 times, due to the remarkable decrease in viscosity of the two phases. Analysis using dimensionless numbers indicated that the flow of the dispersed phase during droplet generation could be explained using an adapted capillary number that includes the effect of the contact angle of the dispersed phase to the chip surface.  相似文献   

7.
This article investigates the formation of albumin droplets in fatty esters by means of a flow focussing geometry where the continuous oil phase is introduced in the two lateral branches of a Y junction. The effect of the geometry is investigated in order to clarify the scales controlling the droplet generation with this type of fluid couple. The transition from regular droplet flow to stratified flow is identified from the experiments. It is found that the droplet size varies linearly with the flow rate ratio between the disperse and continuous phases. This is similar to what is found in T junctions microfluidic systems for low capillary numbers.  相似文献   

8.
We present an experimental and in silico investigation of path selection by a single droplet inside a tertiary-junction microchannel using oil-in-water as a model system. The droplet was generated at a T-junction inside a microfluidic chip, and its flow behavior as a function of droplet size, streamline position, viscosity, and Reynolds number (Re) of the continuous phase was studied downstream at a tertiary junction having perpendicular channels of uniform square cross section and internal fluidic resistance proportional to their lengths. Numerical studies were performed using the multicomponent lattice Boltzmann method. Both the experimental and numerical results showed good agreement and suggested that at higher Re equal to 3, the flow was dominated by inertial forces resulting in the droplets choosing a path based on their center position in the flow streamline. At lower Re of 0.3, the streamline-assisted path selection became viscous force-assisted above a critical droplet size. As the Re was further reduced to 0.03, or when the viscosity of the dispersed phase was increased, the critical droplet size for transition also decreased. This multivariate approach can in future be used to engineer sorting of cells, e.g., circulating tumor cells (CTCs) allowing early-stage detection of life-threatening diseases.  相似文献   

9.
This paper discusses the studies on the internal flow field of droplets traveling in a rectangular microchannel by means of microparticle image velocimetry, specifically concentrating on the effects of capillary number, viscosity ratio and interfacial tension. The flow topology is predominantly dependent on the capillary number. It shows that the evident transitions from three pairs of recirculation zones at lower capillary numbers to one pair of recirculation zones near the sidewalls with low velocity in the central area at intermediate capillary numbers, then to a pair of recirculation zones closest to the axial centerline with high velocity in the central area at higher capillary numbers. There are two critical capillary numbers increasing with viscosity ratio in the evolution of flow features. Droplet size only influences two velocity components values other than the flow topology within intervals separated by the critical values. The equilibrium mechanism of viscous friction force and Marangoni stress dominate the internal topological transition in a surfactant added system. The obtained internal fluid phenomena inside droplets are beneficial to provide a guideline for screening of biochemical reaction conditions in the device.  相似文献   

10.
We present a facile ethanol-in-oil droplet-based microfluidic approach for one-step fabrication of titania hollow spheres through controlled interfacial reaction. The method combines microfluidic generation of uniform ethanol-in-oil droplets and subsequent in situ controlled interfacial reaction within the microfluidic channel. Ethanol-based droplets are suspended in an oil continuous phase containing titanium tertabutoxide. The small amount of water in the droplet phase diffuses to the interface leading to hydrolysis and condensation, and titania solidifies around the droplet forming titania microcapsules. The vigorous reaction between titanium tetrabutoxide and water is controlled by analyzing a mass transfer model, and then by selecting suitable continuous and dispersed phases. Highly viscous paraffin oil in combination with a low-viscosity ethanol-based droplet phase facilitates the successful formation of titania at the interface rather than in the continuous phase. This research provides a new approach for the controlled fabrication of titania microcapsules having uniform particle size and unique folded and crumpled structure.  相似文献   

11.
We report the droplet generation behavior of a microfluidic droplet generator with a controllable deformable membrane wall using experiments and analytical model. The confinement at the droplet generation junction is controlled by using external pressure, which acts on the membrane, to generate droplets smaller than junction size (with other parameters fixed) and stable and monodispersed droplets even at higher capillary numbers. A non-dimensional parameter, i.e., controlling parameter K p, is used to represent the membrane deformation characteristics due to the external pressure. We investigate the effect of the controlled membrane deformation (in terms of K p), viscosity ratio λ and flow rate ratio r on the droplet size and mobility. A correlation is developed to predict droplet size in the controllable deformable microchannel in terms of the controlling parameter K p, viscosity ratio λ and flow rate ratio r. Due to the deflection of the membrane wall, we demonstrate that the transition from the stable dripping regime to the unstable jetting regime is delayed to a higher capillary number Ca (as compared to rigid droplet generators), thus pushing the high throughput limit. The droplet generator also enables generation of droplets of sizes smaller than the junction size by adjusting the controlling parameter.  相似文献   

12.
We experimentally examine the dynamics of droplet assembly and recombination processes in a two-dimensional pore-model system. Monodisperse trains of droplets are formed by focusing streams of immiscible fluids into a square microchannel that is connected to a diverging/converging slit microfluidic chamber. We focus on the limit of dilute emulsions and investigate the formation and stability of crystal-like structures when droplets are hydrodynamically coupled in the chamber. The minimal distance between droplets and the spread of droplet lattices are measured as a function of initial control parameters and the relationship between droplet velocity and trajectory is discussed. We demonstrate that the onset of coalescence depends on both the capillary number based on the viscosity of the external phase and the droplet concentration. The draining time of the thin film between droplets in apparent contact is found to depend on fluid characteristics. Such property allows us to examine the crossover between non-coalescing and coalescing droplet microflows by varying the residence time of the dispersion in the microfluidic chamber. This work characterizes droplet interaction and coalescence phenomena during multiphase transport in a simple extensional microgeometry.  相似文献   

13.
The aim of this paper is to study resonance conditions for acoustic particle focusing inside droplets in two-phase microfluidic systems. A bulk acoustic wave microfluidic chip was designed and fabricated for focusing microparticles inside aqueous droplets (plugs) surrounded by a continuous oil phase in a 380-μm-wide channel. The quality of the acoustic particle focusing was investigated by considering the influence of the acoustic properties of the continuous phase in relation to the dispersed phase. To simulate the system and study the acoustic radiation force on the particles inside droplets, a simplified 3D model was used. The resonance conditions and focusing quality were studied for two different cases: (1) the dispersed and continuous phases were acoustically mismatched (water droplets in fluorinated oil) and (2) the dispersed and continuous phases were acoustically matched (water droplets in olive oil). Experimentally, we observed poor acoustic particle focusing inside droplets surrounded by fluorinated oil while good focusing was observed in droplets surrounded by olive oil. The experimental results are supported qualitatively by our simulations. These show that the acoustic properties (density and compressibility) of the dispersed and continuous phases must be matched to generate a strong and homogeneous acoustic field inside the droplet that is suitable for high-quality intra-droplet acoustic particle focusing.  相似文献   

14.
A single microfluidic chip consisting of six microfluidic flow-focusing devices operating in parallel was developed to investigate the feasibility of scaling microfluidic droplet generation up to production rates of hundreds of milliliters per hour. The design utilizes a single inlet channel for both the dispersed aqueous phase and the continuous oil phase from which the fluids were distributed to all six flow-focusing devices. The exit tubing for each of the six flow-focusing devices is separate and individually plumbed to each device. Within each flow-focusing device, the droplet size was monodisperse, but some droplet size variations were observed across devices. We show that by modifying the flow resistance in the outlet channel of an individual flow-focusing device it is possible to control both the droplet size and frequency of droplet production. This can be achieved through the use of valves or, as is done in this study, by changing the length of the exit tubing plumbed to the outlet of the each device. Longer exit tubing and larger flow resistance is found to lead to larger droplets and higher production frequencies. The devices can thus be individually tuned to create a monodisperse emulsion or an emulsion with a specific drop size distribution.  相似文献   

15.
We demonstrate a robust method to produce monodisperse femtoliter to attoliter droplets by using a nano-microfluidic device. Two immiscible liquids are forced through a nanochannel where a steady nanoscopic liquid filament forms, thinning close to the nanochannel exit to a microchannel due to the capillary focusing. When the nanoscopic filament enters the microchannel, monodisperse droplets are formed by capillary instability. In a certain range of physical parameters and geometrical configurations, the droplet size is only determined by the nanochannel height and independent of liquid flow rates and ratios, surfactants, and continuous phase viscosity. By using nanochannels with a height of 100–900 nm, 0.4–3.5 μm diameter droplets (volume down to 30 aL) have been produced. The generated droplets are stable for at least weeks.  相似文献   

16.
Monodispersed water-in-oil emulsions were prepared with EDGE (Edge based Droplet GEneration) systems, which generate many droplets simultaneously from one junction. The devices (with plateau height of 1.0 μm) were coated with Cu and CuNi having the same hydrophobicity but different surface roughness. Emulsification was performed by using water as dispersed phase and oils with different viscosities (hexadecane, decane, hexane and sunflower oil) as continuous phases; lecithin, polyglycerol polyricinoleate (PGPR) and span80 were used as emulsifiers. The roughness affected the emulsification behaviour significantly. The smoother Cu surface exhibited droplet formation over the entire length of the droplet formation unit, while the rougher CuNi surface showed non-uniform filling of the plateau and much lower droplet formation frequency. In spite of this different behaviour, monodispersed droplets (CV <10 %) were produced by both systems (with span80 and PGPR), with a size six times the plateau height (d avg ≈ 6.0 μm). The droplet size decreased with increasing viscosity ratio and remained constant above some critical value. The emulsification process was stable over a wider range of pressures as previously found for silicon-based systems. The amount of PGPR influenced the pressure stability, but the system could be used effectively, while with lecithin and span80 the stable pressure range was very small. The pressure and viscosity stability of these semi-metal systems with rough surfaces show that the EDGE system has potential for practical applications, especially since overall productivity is not affected.  相似文献   

17.
This article describes the generation of microdispersed bubbles and droplets in a double T-junctions microfluidic device to form immiscible gas/liquid/liquid three-phase flowing systems. Segmented gas plugs are controllably prepared in water at the first T-junction to form gas/liquid two-phase fluid with the perpendicular flow cutting method. Then using this two-phase fluid as the cross-shearing fluid for the oil phase at the second T-junction, the gas/liquid/liquid three-phase flowing systems are prepared. Interestingly, it is found that the break-up of the oil droplets is mainly dominated by the cutting effect of the gas/liquid interface or the pressure drop across the emerging droplet, but independent with the viscous shearing effect of the continuous phase, even at the capillary number (Ca = u wμwow) higher than 0.01. The size laws and the distributions of the bubbles and droplets are investigated carefully, and a mathematical model has been developed to relating the operating conditions with the dispersed sizes.  相似文献   

18.
19.
总结有关液丝破裂研究的实验工作,分析Weber数、流体粘度及初始扰动对液丝破裂的影响。简要介绍牛顿流体和非牛顿流体的一维、二维数学模型,并指出该研究的实际应用和展望。一维模型在最近几年被广泛使用,极大地增强了人们对液滴形成过程中界面破裂的理解,但不能同时得到精确的宏观特征和微观特征;三维模型的计算量庞大。为了研究的可行性和结果的精确性,应对二维模型进行更多研究。  相似文献   

20.
In the surface tension-dominated microchannel T-junction, droplets can be formed as a result of the mixing of two dissimilar, immiscible fluids. This article presents results for very low Capillary numbers and different flow rates of the continuous and dispersed phases. Through three-dimensional lattice Boltzmann-based simulations, the mechanism of the formation of “plugs” in the squeezing regime has been examined and the size of the droplets quantified. Results for Re\textc << 1 Re_{\text{c}} \ll 1 show the dependence of flow rates of the two fluids on the length of the droplets formed, which is compared with existing experimental data. It is shown that the size of plugs formed decreases as the Capillary number increases in the squeezing regime. This article clearly shows that the geometry effect, i.e., the widths of the two channels and the depth of the assembly, plays an important role in the determination of the length of the plugs, a fact that was ignored in earlier experimental correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号