首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Channel‐spanning logjams completely span the active channel and create longitudinal discontinuities of the water surface and stream bed across at least two‐thirds of the channel width. These jams disproportionately affect channel process and form relative to smaller jams that do not span the entire channel width. We analyze a spatially extensive dataset of 859 channel‐spanning jams distributed along 124 km of 16 distinct rivers on the eastern side of Rocky Mountain National Park, Colorado, USA, with drainage areas spanning 2.6 to 258 km2 and diverse valley geometry and forest stand age. We categorized valley geometry in terms of lateral confinement (confined, partly confined, or unconfined), which correlates with gradient. Jams exhibit substantial downstream variability in spacing at channel lengths of 102–103 m. The number of jams within a reach is explained by a statistical model that includes drainage area, valley type (lateral confinement), and channel width. Longitudinal spacing of jams drops substantially at drainage areas greater than ~20 km2, although jam spacing exhibits tremendous variability at smaller drainage areas. We interpret the lack of jams at larger drainage areas to reflect increasing transport capacity for instream wood. We interpret the variability in jam spacing at small drainage areas to reflect local controls of valley geometry and associated wood recruitment and fluvial transport capacity. Our results suggest that management of instream wood designed to facilitate the formation of channel‐spanning jams can be most effectively focused on smaller drainage areas where these jams are most abundant in the absence of management that alters instream wood recruitment or retention. Unmanaged streams in the study region with drainage area <60 km2 have ~1.1 channel‐spanning jams per 100 m length of stream. The cumulative effects of these jams on instream storage of sediment and organic matter, hyporheic exchange, instream habitat, stream metabolism, and channel–floodplain connectivity are likely to be enormous. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we use a system‐wide census of large river and floodplain habitat features to evaluate influences of valley form and land use on salmon habitats along 2,237 km of river in the Puget Sound region of Washington State, USA. We classified the study area by geomorphic process domains to examine differences in natural potential to form floodplain habitats among valley types, and by dominant land cover to examine land use influences on habitat abundance and complexity. We evaluated differences in aquatic habitat among strata in terms of metrics that quantify the length of main channels, side channels, braid channels, and area of wood jams. Among geomorphic process domains, habitat metrics standardized by main channel length were lowest in canyons where there is limited channel migration and less potential to create side channels or braids, and highest in post‐glacial and mountain valleys where island‐braided channels tend to form. Habitat complexity was lower in glacial valleys (generally meandering channels) than in post‐glacial valleys. Habitat abundance and complexity decreased with increasing degree of human influence, with all metrics being highest in areas classified as forested and lowest in areas classified as developed. Using multiple‐year aerial photography, we assessed the ability of our methods to measure habitat changes through time in the Cedar and Elwha Rivers, both of which have recent habitat restoration activity. We were able to parse out sources of habitat improvement or degradation through time, including natural processes, restoration, or development. Our investigation indicates that aerial photography can be an effective and practical method for regional monitoring of status and trends in numerous habitats.  相似文献   

3.
The recruitment of wood from the riparian zone to rivers and streams provides a complex habitat for aquatic organisms and can influence both aquatic biodiversity and ecosystem function. The Daly River in the wet–dry tropics of northern Australia is a highly seasonal, perennially flowing sand‐bed river where surveys of river wood aggregations at the reach scale (~2 km) in 2008 and 2009 recorded densities of 37–78 km?1 and identified distinct types of river wood aggregations: key pieces, standing trees, fallen trees, wrack and single pieces. After larger than average flows in the 2008/2009 wet season, between 46% and 51% of the surveyed river wood had moved. The distribution of wood age classes indicated continual recruitment and slow turnover of wood within the river. Surveys of fish and habitat characteristics at the mesohabitat scale (~100 m) showed fish species richness; diversity and fish abundance were not correlated to the proportion of wood present. Fish assemblage structure was associated with wood cover as well as other environmental variables such as stream width and depth. The importance of in‐stream wood also varied for different species and age classes of fish. This study documents the dynamic nature of river wood aggregations and their complex and variable distribution and suggests their importance as fish habitat in this tropical river. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Large wood, both live and dead, is essential for producing complex habitat in many streams, especially in forested watersheds that support salmonid populations. The addition of engineered wood structures is a common approach taken in many streams where past watershed management practices have resulted in reduced wood loading. We examined six 300‐m stream reaches in the Lagunitas Creek watershed, Northern California, to determine (i) the distribution of large wood in the bankfull channel and 10‐year floodplain, (ii) the influence of large wood on the size and distribution of pools and (iii) whether streams with engineered wood structures had greater diversity of pool habitat to support salmonid populations. We found that the amount of large wood in the bankfull channel and the amount available for recruitment from the 10‐year floodplain were highly variable among and within reaches examined and largely dependent on the local geomorphic setting. Stream reaches with engineered wood structures had elevated pool frequencies relative to reaches without these structures, suggesting a higher capacity to support salmonids during critical life stages. Among large wood pieces that had a strong influence on pool formation, 23% had an attached root wad and 66% were part of a cluster. All of the study reaches we examined had lower volumes of large wood in their bankfull channels than similar stream types with natural wood‐loading levels, suggesting that increased additions of large wood could provide ecosystem benefits over time. These principles can be understood and transferred effectively to other watersheds using a framework of wood‐loading process domains. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
It is well known that large woody debris (LWD) plays an important functional role in aquatic organisms' life. However, the influence of LWD on channel morphology and aquatic environments at watershed levels is still unclear. The relationships between wood and surface structure and aquatic habitat in 35 first through fifth order streams of southern interior British Columbia were investigated. Study streams in the channel networks of the study watersheds were classified into four size categories based on stream order and bankfull width: Stream size I: bankfull width was less than 3 m, Stream size II: 3–5 m, Stream size III: 5–7 m, Stream size IV: larger than 7 m. We found the number of functional pieces increased with stream size and wood surface area in stream sizes I, II and III (24, 28 and 25 m2/100 m2, respectively) was significantly higher than that in stream size IV (12 m2/100 m2). The contribution of wood pieces to pool formation was 75% and 85% in stream sizes II and III, respectively, which was significantly higher than those in stream size I (50%) and size IV (25%). Between 21% and 25% of wood pieces were associated with storing sediment, and between 20% and 29% of pieces were involved in channel bank stability in all study streams. Due to long‐term interactions, LWD in the intermediate sized streams (Size II and III) exhibited much effect on channel surface structure and aquatic habitats in the studied watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
After a long absence, beaver Castor fiber are rapidly returning to Europe. Their dam‐building and tree‐felling behaviour may have consequences for salmon Salmo salar and sea trout Salmo trutta management. In 2003 we investigated the parallel use of stream sections by beaver, sea trout and salmon and determined the potential hindrance that beaver dam‐building presented for reproducing salmon and sea trout along 65 km of the Numedalslågen River and tributaries, a major Norwegian catchment. We also surveyed landowner attitude to having beaver on salmon and sea trout streams. Most salmon spawned in the river and most sea trout in 51 tributaries. Nine of these tributaries also hosted spawning salmon. 15 (29%) of the 51 tributaries with spawning sea trout and six (67%) of the nine with spawning salmon had intermittently been occupied by beaver. Though beaver preferred to colonize the same sections of stream used for spawning, only 15% of the stream length navigable by salmon and sea trout on the 51 tributaries had actually been used by beaver, and only three colonies were occupied autumn 2003 (1 colony/25.0 km). Five dams were functioning during autumn 2003 on the 51 tributaries (1 dam/14.3 km). These potentially hindered sea trout and salmon from reaching 18% and 3%, respectively of their potential spawning habitat, though all dams were low (≤0.5 m). Though the autumn density of occupied beaver colonies along the river (1 colony/2.5 km) was 10.0 times the density on the 51 tributaries, no dams were built on the river. Thus most salmon reproduction in the catchment was unhindered by beaver. Nine of 14 landowners were unequivocally positive about having beaver together with salmon and sea trout. We conclude that the presence of beaver on similar catchments will likely have only an insignificant negative impact on the reproduction of sea trout and salmon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Stream restoration approaches most often quantify habitat degradation, and therefore recovery objectives, on aquatic habitat metrics based on a narrow range of species needs (e.g., salmon and trout), as well as channel evolution models and channel design tools biased toward single‐threaded, and “sediment‐balanced” channel patterns. Although this strategy enhances perceived habitat needs, it often fails to properly identify the underlying geomorphological and ecological processes limiting species recovery and ecosystem restoration. In this paper, a unique process‐based approach to restoration that strives to restore degraded stream, river, or meadow systems to the premanipulated condition is presented. The proposed relatively simple Geomorphic Grade Line (GGL) design method is based on Geographic Information System (GIS) and field‐based analyses and the development of design maps using relative elevation models that expose the relic predisturbance valley surface. Several case studies are presented to both describe the development of the GGL method and to illustrate how the GGL method of evaluating valley surfaces has been applied to Stage 0 restoration design. The paper also summarizes the wide applicability of the GGL method, the advantages and limitations of the method, and key considerations for future designers of Stage 0 systems anywhere in the world. By presenting this ongoing Stage 0 restoration work, the authors hope to inspire other practitioners to embrace the restoration of dynamism and diversity through restoring the processes that create multifaceted river systems that provide long‐term resiliency, meta‐stability, larger and more complex and diverse habitats, and optimal ecosystem benefits.  相似文献   

8.
In dry ecoregions, trees are restricted to river valley floodplains where river water supplements the limited local precipitation. Around the Northern Hemisphere, cottonwoods, riparian poplars, are often predominant trees in floodplain forests and these ecological specialists require floods that create and saturate sand and gravel bars, enabling seedling recruitment. By pairing the interpretation of aerial photographs at approximately decade intervals with dendrochronology, we explored the coordination between river floods, geomorphic disturbance and colonization of plains cottonwoods (Populus deltoides) over eight meanders along the Red Deer River in the semi‐arid prairie of western Canada. This river has a relatively natural flow regime and minimal human alteration through the World Heritage Site of Dinosaur Provincial Park. We found that the 50‐year flood of 1954 increased channel migration and produced extensive accretion with downstream expansion of meander lobes and some channel infilling, which was followed by prolific cottonwood colonization. Those processes accompanied the major flood, while bank erosion and cottonwood losses were more gradual and continuous over the past half‐century. Results indicated even greater floodplain and woodland development after an earlier 100‐year flood in 1915. Each flood produced an arcuate band of mature cottonwoods and there were five to seven progressively older woodland bands across the floodplain, with each cottonwood age grouping increasing by about a half‐century. The 700 m wide floodplain was progressively reworked by the river through pulses of channel movement and floodplain and woodland development over approximately 250 years and correspondingly, the oldest cottonwoods were about 250 years old.  相似文献   

9.
As changes in landuse and the demand for water accelerate, regulators and resource managers are increasingly asked to evaluate water allocation against the need for protection of in‐stream habitat. In the United States, only a small number of river basins have the long‐term hydrograph data needed to make these assessments. This paper presents an example of how to bridge the conceptual and physical divide between GIS‐based watershed modelling of basin‐discharge and in‐stream hydraulic habitat models. Specifically, we used a Soil and Water Assessment Tool (SWAT) model for the Hillsborough River to produce data for use in a Physical HABitat SIMulation (PHABSIM) model of the same river. This coupling of models allowed us to develop long‐term discharge data in ungauged river systems based on watershed characteristics and precipitation records. However this approach is not without important limitations. Results confirm that accuracy of the SWAT‐predicted hydrograph declines significantly when either the DEM resolution becomes too coarse or if DEM data are resampled to a coarser or finer resolution. This is due to both changes in the size and shape of the river basin with the varying DEMs and subsequent shifts in the proportions of land use, soils and elevation. Results show the use of 30 m DEMs produced hydrographic patterns amenable for using in‐stream habitat protocols like PHABSIM model, especially where little or no hydrographic and land use information exists. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Instream wood promotes habitat heterogeneity through its influence on flow hydraulics and channel geomorphology. Within the Columbia River Basin, USA, wood is vital for the creation and maintenance of habitat for threatened salmonids. However, our understanding of the relative roles of the climatic, geomorphic, and ecological processes that source wood to streams is limited, making it difficult to identify baseline predictions of instream wood and create targets for stream restoration. Here, we investigate how instream wood frequency and volume differ between seven sub‐basins of the interior Columbia River Basin and what processes shape these differences within these sub‐basins. We collected data on wood volume and frequency, discharge and stream power, and riparian and watershed forest structure for use in modelling wood volume and frequency. Using random forest models, we found that mean annual precipitation, riparian tree cover, and the individual watershed were the most important predictors of wood volume and frequency. Within sub‐basins, we used linear models, finding that some basins had unique predictors of wood. Discharge, watershed area, or precipitation often combined with forest cover, riparian conifer, and/or large tree cover in models of instream large wood volume and frequency. In many sub‐basins, models showed at least one hydrologic variable, indicative of transport competence and one ecological variable, indicative of the reach or upstream watershed's capability to grow measurable instream wood. We conclude that basin‐specific models yield important insights into the hydrologic and ecological processes that influence wood loads, creating tractable hypotheses for building predictive models of instream wood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Setback levees, in which levees are reconstructed at a greater distance from a river channel, are a promising restoration technique particularly for alluvial rivers with broad floodplains where river‐floodplain connectivity is essential to ecological processes. Documenting the ecological outcomes of restoration activities is essential for assessing the comparative benefits of different restoration approaches and for justifying new restoration projects. Remote sensing of aquatic habitats offers one approach for comprehensive, objective documentation of river and floodplain habitats, but is difficult in glacial rivers because of high suspended‐sediment concentrations, braiding and a lack of large, well‐differentiated channel forms such as riffles and pools. Remote imagery and field surveys were used to assess the effects of recent and planned setback levees along the Puyallup River and, more generally, the application of multispectral imagery for classifying aquatic and riparian habitats in glacial‐melt water rivers. Airborne images were acquired with a horizontal ground resolution of 0.5 m in three spectral bands (0.545–0.555, 0.665–0.675 and 0.790–0.810 µm) spanning from green to near infrared (NIR) wavelengths. Field surveys identified river and floodplain habitat features and provided the basis for a comparative hydraulic analysis. Broad categories of aquatic habitat (smooth and rough water surface), exposed sediment (sand and boulder) and vegetated surfaces (herbaceous and deciduous shrub/forest) were classified accurately using the airborne images. Other categories [e.g. conifers, boulder, large woody debris (LWD)] and subdivisions of broad categories (e.g. riffles and runs) were not successfully classified either because these features did not form large patches that could be identified on the imagery or their spectral reflectances were not distinct from those of other habitat types. Airborne imagery was critical for assessing fine‐scale aquatic habitat heterogeneity including shallow, low‐velocity regions that were not feasible or practical to map in the field in many cases due to their widespread distribution, small size and poorly defined boundaries with other habitat types. At the reach‐scale, the setback levee affected the amount and distribution of riparian and aquatic habitats: (1) the area of all habitats was greater where levees had been set back and with relatively more vegetated floodplain habitat and relatively less exposed sediment and aquatic habitat, (2) where levees confine the river, less low‐velocity aquatic habitat is present over a range of flows with a higher degree of bed instability during high flows. As river restoration proceeds in the Pacific Northwest and elsewhere, remotely acquired imagery will be important for documenting its effects on the amount and distribution of aquatic and floodplain habitats, complimenting field data as a quantitative basis for evaluating project efficacy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Bridges that cross streams can be greatly affected by channel instabilities, such as channel widening, lateral migration and channel bed degradation. Attention to channel conditions in the vicinity of bridges is an important aspect of bridge maintenance and safety. Channel stability is also critical to goals of multi‐objective river management. Given that channel stability is important for both river management and the structural stability of bridges, any river management scheme should consider the stability of bridge‐stream intersections. In this paper, the characteristics of bridge‐stream intersections across the United States are described based on existing literature and recent field observations. A set of recommendations for addressing and improving channel stability at bridges is suggested, including: (1) controlling water and sediment discharges at the catchment level; (2) revegetating channel banks with woody vegetation; (3) reshaping the channel cross‐section to a more stable, configuration; (4) removing disturbances from the stream channel, such as cattle and (5) using structures to control flow near channel beds and banks. The physiographic setting is a factor in the solution of at least the first three suggestions in this list. Attention to the physical characteristics of bridge‐stream intersections in the various physiographic regions can lead to sustainable solutions for stabilizing channels at bridge‐stream intersections. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Pacific salmon (Oncorhynchus) use a variety of rearing environments prior to seaward migration, yet large river habitats and their use have not been well defined, particularly at the southernmost salmon range where major landscape‐level alterations have occurred. We explored juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) presence along the river continuum and in main‐channel and off‐channel habitats of a regulated California Mediterranean‐climate river. Over an 8‐year period, off‐channels of the lower Mokelumne River exhibited slower and warmer water than the main‐channel. Probability of salmonid presence varied by stream reach and habitat types. Steelhead and Chinook salmon both demonstrated transitional responses to the dry season, with juveniles leaving off‐channels by midsummer. This corresponded to flow recession, increasing water temperatures, salmonid growth and end of emigration period. Main‐channel steelhead observations continued until the following storm season, which brought cool flood flows to reconnect off‐channels and the next juvenile cohort of both species to the river. Within arid climates, low‐gradient off‐channels appear more transiently used than in cooler and more northern humid climate systems. Within a highly regulated Mediterranean‐climate river, off‐channel habitats become increasingly scarce, disconnected or temperature limiting in low‐gradient reaches both seasonally and due to anthropogenic modifications. These observations may provide guidance for future management within large salmon streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Geomorphology at the scale of stream valleys influences smaller scale processes that give rise to spatially distributed patches, including large wood jams (LWJ) in streams. Understanding the spatial distribution of LWJ along streams with reference to large‐scale geomorphology is valuable for understanding stream and riparian interactions, and may be critical for effective stream management and restoration. We surveyed the locations of LWJ along 18 stream segments within study areas defined by stream‐valley geomorphology. The objective of this study was to test the prediction that LWJ in this system will be aggregated in areas defined by stream‐valley geomorphology, but be randomly distributed at smaller scales. The spatial distribution of LWJ was analysed by a one‐dimensional K‐function analysis capable of detecting aggregated, random and segregated patterns at different scales. The prediction that LWJ aggregate in areas defined by stream‐valley geomorphology was supported: LWJ aggregated at scales up to several kilometres in three streams. LWJ also was segregated at smaller scales in two of these streams; this was detectable when several stream valley segments were considered together. The prediction that LWJ would be randomly distributed at smaller scales was supported at most smaller scales for most streams. In fact, 40% of individual stream valley segments contained LWJ that were randomly distributed at all scales. Twenty‐seven per cent of individual stream valley segments showed segregated LWJ distributions. Large‐scale aggregation of LWJ evidences the need to select reference reaches that encompass several geomorphic patches at the scale of the stream valley. Segregated patterns of LWJ distributions evidence opportunities to better understand the relationships between hydraulic systems, material transport dynamics and riparian forests. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
长江流域水系划分与河流分级初步研究   总被引:1,自引:0,他引:1  
将推荐的水系划分与河流分级Horton法相结合,通过合理选取最小河流(流域)单元、科学制作河流树状图表,初步研究了长江流域(不含太湖水系)的河流分级。研究结果显示:①推荐将长江水系划分为干流水系与雅砻江、岷江、嘉陵江、乌江、洞庭湖、汉江、鄱阳湖、太湖8个支流水系;② 581条河流基本特性资料的收集、整理与分析表明长江流域河流的河长与流域面积约为0.5次方关系,选取流域面积不小于2 000 km2或河长不小于100 km的河流为最小河流(流域)单元,确定长江流域(不含太湖水系)河流总数为374条;③以岷江水系为例,精心制作了长江流域各水系的河流树状图表,树状图显示了河流隶属关系、分级数、河长、流域面积等特性;④长江流域(不含太湖水系)最高河流分级数为6级。按河流统计:6级1条(0.3%),5级3条(0.8%),4级6条(1.6%),3级14条(3.7%),2级71条(19.0%),1级279条(74.6%);按水系统计:岷江、嘉陵江、鄱阳湖为5级,干流、雅砻江、洞庭湖、汉江为4级,乌江为3级。  相似文献   

16.
Benthic invertebrate communities were examined in Compensation Creek, a man‐made stream in south‐central Newfoundland, Canada. Samples taken in September 2006 and September 2007 from large woody debris (LWD) were compared with samples from benthic environments to determine whether LWD supported a more diverse and abundant invertebrate community. Benthic habitats in a nearby natural stream were also sampled. Taxa composition was similar between the man‐made and the natural stream, highlighting successful colonization for the majority of taxa. Within Compensation Creek, taxa richness was higher in benthic habitats than on LWD, likely influenced by the successional age of the stream and surrounding habitat. The more complex benthic substrate provided refugia and allowed for the accumulation of fine detritus as a food source. Scrapers were almost completely absent from LWD and collector‐gatherer abundance was greater in the benthos. Collector‐filterer abundance was more than six times greater near the pond outflow than farther downstream when discharge was high, but abundances were almost equal when discharge was reduced. Riparian vegetation has not fully established around the man‐made stream, whereas it is overhanging and extensive at the natural stream, leading to more leaf‐litter input for shredders. As the morphology of Compensation Creek changes, the invertebrate community will continue to develop and likely increase utilization of accumulated detritus at LWD. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The formation of large woody debris (LWD) piles has a profound impact on channel patterns and riparian succession in temperate rivers. The opportunity to study LWD along the Sabie River, a river in the semi‐arid region of Kruger National Park, South Africa, arose in February 2000 after a significant flood (c. 100‐year return interval) removed a large proportion of the fully mature riparian forest and other plant communities. Much of the uprooted vegetation was deposited as LWD piles (woody vegetation accumulations deposited on the ground > 0.1 m3) throughout the riparian and upland zones. In this article we describe the spatial distribution patterns of LWD as related to geomorphic channel type and flood frequency zone, and assess pile composition characteristics six months after the flood. Within the areas surveyed there were 68 LWD piles per hectare, the median size of LWD piles was 4.6 m3 but pile sizes (by volume) varied widely. Pool/rapid geomorphic channel types had the highest density of LWD piles (79 ha?1) and the largest piles (by volume) were in the bedrock anastomosing channels (mean = 124 m3). Piles were larger in the seasonal and ephemeral flood frequency zones (mean = 54 m3 and 55 m3) than piles in the active zone (c. 2 m3). The patterns of distribution and volume of LWD will affect the subsequent development of vegetation communities as debris piles form a mosaic of patches of surviving organisms and propagules that can strongly influence the initial trajectory of succession. The amount, distribution, and subsequent decomposition of LWD are different from that reported for temperate rivers, suggesting that the role of LWD may be different on non‐floodplain rivers such as the Sabie in semi‐arid South Africa. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Widespread hydrologic alterations have simplified in-stream habitats in rivers globally, driving population declines and extirpations of many native fishes. Here, we examine how rapid geomorphic change in a historically degraded desert river has influenced habitat diversification and ecosystem persistence. In 2010, a large reach of the degraded and simplified lower San Rafael River (SRR), Utah, was impacted by the formation of a valley plug and began to shift from a homogenous, single-thread channel to a complex, multi-threaded riverscape. We combined field measurements and drone-collected imagery to document changes in fish habitat due to the valley plug. Our results demonstrate that in 2021, the affected reach was more diverse than any other stream reach along the SRR, containing 641% more diverse habitat (e.g., pools, riffles, and backwaters) than what was measured in 2015. The plug reach also retained water for periods beyond what was expected during seasonal drying, with the total extent of inundation within the riverscape increasing by over 2800%. Since the formation of the valley plug, riparian habitat has increased by 230% and channel networks have expanded to more than 50 distinct channels throughout the zone of influence. Our results provide evidence of successful self-restoration in a formerly highly degraded reach of desert river, and encourage new methods of desert river restoration. We aim to inform the use of large-scale, disruptive restoration actions like intentional channel occlusions, with the goal of mitigating the impacts of simplification and increasing habitat persistence in the face of exacerbated aridity in the desert Southwest.  相似文献   

19.
Large woody debris (LWD) significantly influences the structure and function of small headwater streams. However, what it contributes to geomorphic function depends on where it is located relative to the stream channel. We quantified LWD abundance and tested for associations among decay, position, orientation and function classes in 21 streams near Hinton, Alberta, Canada. LWD was more frequent (64.0 ± 3.3 LWD 100 m?1) in streams in the Alberta foothills than it was in small streams in mountain, coastal, broadleaf deciduous and boreal forests, likely due to the narrow channel widths and low capacity of our study streams to transport logs downstream. LWD volumes were greater in coastal streams than in the Alberta foothills, likely due to differing tree sizes and decay rates. LWD morphology changed significantly as logs decayed and transitioned to different position and orientation classes. LWD in decay classes I and II were longest, most commonly in the bridge and partial bridge position classes, oriented perpendicular to stream flow, suspended above the channel and contributing least to stream geomorphic functions. LWD length and volume (but not diameter) decreased as decay advanced, making logs less stable. LWD in decay classes III and IV were strongly associated with partially bridged, loose, and buried position classes. They were more commonly diagonal or parallel to stream flow and contributed to bank stability, sediment retention, debris jams and riffle and pool formations. These results have been integrated into a conceptual model of LWD dynamics that provides a framework for future research on the mechanisms and rates of LWD recruitment, decay, transport and function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We examined inter‐habitat variation in benthic macroinvertebrate assemblages in the 180‐km Garrison Reach of the Upper Missouri River, North Dakota (USA) in 2001–2003. The Garrison Reach is unchannelized with a mostly rural setting. Flows are regulated by Garrison Dam. We sampled benthos from three habitats defined a priori: channel, shoreline, and backwater. Benthic assemblages were different in each habitat. Average Bray‐Curtis dissimilarity in assemblage composition ranged from 89% for backwater versus channel habitat to 70% for backwater versus shoreline habitat. There were distinct intra‐habitat groups within a priori habitats: channel assemblages included moving‐sand assemblages and other‐substrate channel assemblages; backwater assemblages included connected (to the river channel) and unconnected backwater assemblages; shorelines assemblages varied between natural (unprotected) and riprap (rock revetment) shorelines. Abundance and taxa richness were lowest and spatial variability highest for moving‐sand channel assemblages. Abundance was highest in backwaters. Taxa richness in backwaters and along channel shorelines were similar. Assemblages in all three habitats were dominated by Nematoda, Oligochaeta and Chironomidae. Taxa in these groups comprised at least 80% of mean abundance in all three habitats. Taxa that discriminated among habitats included the psammophilic chironomid Chernovskiia for moving‐sand channel substrates versus all other habitats; Hydroptila (Trichoptera) for riprap vs natural shorelines, Aulodrilus (Oligochaeta) for connected versus unconnected backwaters; and Nematoda for backwater versus channel and shoreline versus channel. Based on overlap patterns in benthic assemblages among habitats, we concluded that sampling main channel shorelines should also capture much of the natural and stressor‐induced variation in connected backwater and channel habitat exclusive of moving‐sand channel habitat. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号