共查询到19条相似文献,搜索用时 62 毫秒
1.
基于多级客户模型的个性化推荐机制 总被引:1,自引:0,他引:1
个性化是未来Web智能系统的一大特征.为了实现商品的个性化推荐,提出了一种新的基于多级客户模型的推荐系统机制,它由数据准备、模型学习、推荐集的生成和智能过滤四个子过程构成.该机制借助于多级客户模型从客户的购物需求、偏爱特征和消费能力三方面捕获客户的实际需求,从而实现了一种深层次的个性化推荐,改善了推荐效果. 相似文献
2.
《软件》2017,(7):70-78
在现有文献统计下个性化推荐算法可以分为如下三类~([1,2]):基于内容的推荐(Content-based Recommendation)~([3,4])、基于协同过滤的推荐(Collaborative Filtering based Recommendation)~([5-7]),以及混合型推荐系统(Hybrid Recommendation)~([8-10])。其中,基于协同过滤的推荐因其对专家知识依赖度低以及可以利用群体智慧等特点,得到了最为深入也最为广泛的研究,它又可以被分为多个子类别,主要包括基于用户的协同过滤(User-based CF)~([11]),基于物品的协同过滤(Item-based CF)~([12]),以及基于模型的协同过滤(Model-based CF)~([6]),等。其中基于模型的推荐是一类方法的统称,它指利用系统已有的数据和用户历史行为,学习和构建一个模型,进而利用该模型进行用户偏好建模、预测与个性化推荐,根据具体应用场景和可用数据的不同,这里的模型可以是常用的奇异值分解等矩阵分解模型~([13]),也可以是主题模型、人工神经网络、概率图模型、组合优化甚至深度学习等机器学习模型~([1])。在下面的部分,我们将在如上几个方面对个性化推荐系统的研究现状进行具体的介绍。 相似文献
3.
动态挖掘算法考虑顾客随时间变化的动态行为轨迹的特性,采取动态追踪,以顾客的动态行为轨迹为依据实现对顾客的个性化推荐。由于行为轨迹中时间段划分跨度对推荐源数据实用价值存在影响,故提出了时间约束定义,同时完成了该算法中自动学习功能的实现。实验结果表明,基于该算法的推荐系统有较高的推荐准确度。 相似文献
4.
综合协同过滤算法和基于网络结构算法,提出全新的混合推荐算法,在对象和对象的相似性基础上考虑了项目之间的作用关系,得到最终改进后的混合算法MIX。通过对数据集的计算,排序值准确性大幅提高,推荐精度得到提高。 相似文献
5.
6.
用户行为模式下电子商务网站个性化推荐研究 总被引:1,自引:0,他引:1
个性化推荐可解决网络信息多样性与用户需求之间的矛盾。个性化推荐在电子商务应用领域取得了显著的成效。论文首先对四种主流的电子商务个性化推荐技术进行综述,其次提出用户行为模式下电子商务网站个性化推荐方法,其个性化推荐的实现一般包括用户行为聚类、个性化推荐二个模块,最后通过图书电子商务网站的实验对推荐方法的效果进行验证。 相似文献
7.
传统推荐系统算法模型主要集中研究用户偏好与物品的关联性,根据用户主观意见进行推荐,未充分考虑用户与物品所处的客观环境,造成推荐时的实际偏差.本文基于传统推荐算法引入时间因子,提高模型推荐效果.实现方法主要是通过比较引入与未引入时间因子,使用UserCF算法和ItemCF算法观察MAE值的大小变化情况.时间因子的引入,改... 相似文献
8.
互联网的出现和发展给用户带来大量信息数据,造成信息超载(Information Overload)现象,解决信息超载的一种有效办法是推荐系统。推荐系统现已广泛应用于多种领域,其中最典型的为电子商务领域。同时,学术界对推荐系统的研究热度也越来越高,逐步形成了一门独立的学科。本文在借鉴和分析前人研究成果的基础上,进一步阐释了个性化推荐技术的发展轨迹、现状及存在的挑战,重点研究个性化推荐中的数据稀疏性问题及相关的解决方法,为个性化推荐的进一步发展提供理论支持。 相似文献
9.
协同过滤推荐作为主流的个性化推荐方法在实际应用中存在一定缺陷, 在一些情况下得到的推荐结果不够准确。考虑到信任与用户偏好相似性的关系, 将信任引入到推荐模型中, 并同时考虑暗示用户偏好的多维因素, 提出基于信任偏好的个性化推荐方法, 以提高推荐系统的准确性, 并用实验验证了此方法的有效性。 相似文献
10.
11.
个性化Web推荐服务研究 总被引:12,自引:1,他引:12
本文主要论述了个性化Web推荐构成,提出了基于Web挖掘的个性化推荐服务研究中的用户聚类、Web页面聚类、n元预测模型及页面加权算法。利用这些算法得到的个性化信息可以准确把握用户兴趣模式并为用户提供“一对一”的具备自适应性的智能个性化服务。 相似文献
12.
基于用户近期兴趣视图的个性化推荐 总被引:1,自引:0,他引:1
提出了一种基于用户近期视图进行个性化推荐的方法。通过对用户浏览行为的捕获,形成用户近期视图反应用户的这种近期兴趣变化,以此为用户提供及时准确的个性化信息推荐。并用实验验证了利用此方法进行个性化推荐具有比较理想的效果。 相似文献
13.
个性化服务中基于模糊聚类的协同过滤推荐 总被引:2,自引:1,他引:1
推荐系统是个性化服务中最重要的技术之一,协同过滤技术已经成功地应用于个性化推荐系统中。随着用户和商品数目日益增加,推荐系统的效能逐渐降低,实时性要求也难以保证。针对此缺点,本文使用了一种基于模糊聚类的协同过滤推荐,根据用户对项目评分的相似性对项目进行模糊聚类,并在此基础上搜索目标用户的最近邻居,从而缩小最近邻的查找范围并产生推荐结果。实验结果表明,该方法可以有效提高个性化服务中的实时响应速度。 相似文献
14.
个性化推荐系统是根据用户的爱好,给用户推荐符合用户兴趣的对象的一种高级商务智能平台.论文重点探讨基于用户的协同过滤算法,介绍其基本思想和工作流程,并通过高级语言C++来实现三种相似度计算方法,通过实验比较得出了最佳的计算方法,并设计实现了一个电子商务个性化推荐系统原型,对其他同类网站应用个性化推荐系统具有很好的参考价值. 相似文献
15.
协同过滤推荐是电子商务系统中最为重要的技术之一.随着电子商务系统中用户数目和商品数目的增加,用户-项目评分数据稀疏性问题日益显著.传统的相似度度量方法是基于用户共同评分项目计算的,而过于稀疏的评分使得不能准确预测用户偏好,导致推荐质量急剧下降.针对上述问题,本文考虑用户评分相似性和用户之间信任关系对推荐结果的影响,利用层次分析法实现用户信任模型的构建,提出一种融合用户信任模型的协同过滤推荐算法.实验结果表明: 该算法能够有效反映用户认知变化,缓解评分数据稀疏性对协同过滤推荐算法的影响,提高推荐结果的准确度. 相似文献
16.
17.
18.
19.
随着互联网技术的迅猛发展,基于开发者社区的提问-回答经验交流方式已成为众多开发人员解决软件开发、维护过程中所遇问题的重要手段之一.如何为开发者社区中的提问者及时、准确地推荐问题回答者,是具有实际需求的重要问题.通过对Stack Overflow和Github两个具有代表性的主流开发者社区相关数据的收集和分析,观察到影响上述问题推荐准确性和反馈及时性的3个现象:(1)用户标签自定现象,即开发者社区中,用户的标签信息是由用户自己主观定义所得,而非系统根据用户的历史行为客观标定;(2)不对称活跃现象,即用户可能在某个或某些开发者社区中活跃,但在其他社区中并不具有同等活跃程度,甚至不活跃;(3)关键词集封闭现象,即开发者社区中的问题回答者推荐仅依据问题文本中的关键词,而未考虑其他语义相关的关键词.针对以上问题,融合开发者社区的用户信息,通过分析用户与用户之间的互动行为,建立跨社区的开发者网络,并提出一种基于重启随机游走的算法更新用户标签.进一步地,通过使用Taxonomy来扩充问题的查询关键词范围,在此基础上,协同用户矩阵进行更加准确的推荐,并增大了推荐时有效用户的范围.收集的实验数据包括170万个有效主题、累计40万用户以及117个标签.实验结果证实,所提出的算法具有较好的F-measure和NDCG度量.特别是在冷门标签的推荐中,与未采用该方法的推荐算法相比,基于NDCG度量的推荐准确率至少可提高2倍,部分甚至可高达4倍. 相似文献