首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When a small amount of CuO was added to (Na0.5K0.5)NbO3 (NKN) ceramics sintered at 960°C for 2 h, a dense microstructure with increased grains was developed, probably due to liquid-phase sintering. The Curie temperature slightly increased when CuO exceeded 1.5 mol%. The Cu2+ ion was considered to have replaced the Nb5+ ion and acted as a hardener, which increased the E c and Q m values of the NKN ceramics. High piezoelectric properties of k p=0.37, Q m=844, and ɛ3 T 0=229 were obtained from the specimen containing 1.5 mol% of CuO sintered at 960°C for 2 h.  相似文献   

2.
The sintering temperature of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 (NKN–BT) ceramics needs to be decreased below 1000°C to prevent Na2O evaporation, which can cause difficulties in poling and may eventually degrade their piezoelectric properties. NKN–BT ceramics containing CuO were well sintered at 950°C with grain growth. Poling was easy for all specimens. Densification and grain growth were explained by the formation of a liquid phase. The addition of CuO improved the piezoelectric properties by increasing the grain size and density. High piezoelectric properties of d 33=230 pC/N, k p=37%, and ɛ3T0=1150 were obtained from the specimen containing 1.0 mol% of CuO synthesized by the conventional solid-state method.  相似文献   

3.
The objective of this work was to lower the sintering temperature of K0.5Na0.5NbO3 (KNN) without reducing its piezoelectric properties. The KNN was sintered using 0.5, 1, 2, and 4 mass% of (K, Na)-germanate. The influence of the novel sintering aid, based on alkaline germanate with a melting point near 700°C, on the sintering, density, and piezoelectric properties of KNN is presented. The alkaline-germanate-modified KNN ceramics reach up to 96% of theoretical density at sintering temperatures as low as 1000°C, which is approximately 100°C less than the sintering temperature of pure KNN. The relative dielectric permittivity (ɛ/ɛ0) and losses (tanδ), measured at 10 kHz, the piezo d 33 coefficient, the electromechanical coupling and mechanical quality factors ( k p, k t, Q m) of KNN modified with 1 mass% of alkaline germanate are 397, 0.02, 120 pC/N, 0.40, 0.44, and 77, respectively. These values are comparable to the best values obtained for KNN ceramics sintered above 1100°C.  相似文献   

4.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

5.
Hard piezoelectrics with high dielectric and piezoelectric constants are used for high-power applications. However, the sintering temperature of these ceramics is high, around 1200°C, restricting the usage of cheap base metal electrodes in fabrication of multi-layer components. This study investigates the effect of CuO and ZnO on the sintering temperature of a hard piezoelectric, APC 841, which is a MnO2- and Nb2O5-modified PZT. The addition of CuO decreased the sintering temperature through the formation of a liquid phase. However, the piezoelectric properties of the CuO-added ceramics sintered at ≤950°C were lower than the desired values. The addition of ZnO resulted in a significant improvement in the piezoelectric properties. This enhancement was attributed to the formation of a homogeneous microstructure with large grains. The APC 841+0.2 wt% CuO+1.1 wt% ZnO ceramics sintered at 950°C showed excellent piezoelectric and dielectric properties with values of k p=0.532, Q m=750, d 33=351 pC/N, ɛ33o=1337, and T c=280°C.  相似文献   

6.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

7.
Low-temperature-sinterable (Zr0.8Sn0.2)TiO4 powders were prepared using 3 mol% Zn(NO3)2 additive and then compared with powders prepared using 3 mol% ZnO additive and no additives. Sintering at 1200°C for 2 h produced a dielectric ceramic with ρ= 98.6% of theoretical density (TD), ɛr= 38.4, Q × f (GHz) = 42000, and τ f =−1 ppm/°C. Sintering at 1250°C resulted in an excellent dielectric with ρ= 99% of TD, epsilonr= 40.9, Q × f (GHz) = 49000, and τ f =−2 ppm/°C. Scanning electron microscopy showed a microstructure with grains measuring 0.5 to 1 μm, and transmission electron microscopy revealed secondary phase in the grain boundaries.  相似文献   

8.
The 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 (0.95NKN–0.05ST) ceramics formed in this study had a porous microstructure with small grains and low piezoelectric properties due to their low density. However, when a small amount of Na2O was intentionally subtracted from the 0.95NKN–0.05ST ceramics, a liquid phase was formed, which led to increased density and grain size. Piezoelectric properties were also improved for the Na2O-subtracted 0.95NKN–0.05ST ceramics. The increased density and grain size were responsible for the enhancement of the piezoelectric properties. In particular, the 0.95(Na0.49K0.5)NbO2.995–0.05ST ceramics showed high piezoelectric properties of d 33=220, k p=0.4, Q m=72, and ɛ3To=1447, thereby demonstrating their promising potential as a candidate material for application to lead-free piezoelectric ceramics.  相似文献   

9.
Li2CO3 was added to Mg2V2O7 ceramics in order to reduce the sintering temperature to below 900°C. At temperatures below 900°C, a liquid phase was formed during sintering, which assisted the densification of the specimens. The addition of Li2CO3 changed the crystal structure of Mg2V2O7 ceramics from triclinic to monoclinic. The 6.0 mol% Li2CO3-added Mg2V2O7 ceramic was well sintered at 800°C with a high density and good microwave dielectric properties of ɛ r=8.2, Q × f =70 621 GHz, and τf=−35.2 ppm/°C. Silver did not react with the 6.0 mol% Li2CO3-added Mg2V2O7 ceramic at 800°C. Therefore, this ceramic is a good candidate material in low-temperature co-fired ceramic multilayer devices.  相似文献   

10.
Lead-free Na0.5K0.5NbO3 (NKN) piezoelectric ceramics were fairly well densified at a relatively low temperature under atmospheric conditions. A relative density of 96%–99% can be achieved by either using high-energy attrition milling or adding 1 mol% oxide additives. It is suggested that ultra-fine starting powders by active milling or oxygen vacancies and even liquid phases from B-site oxide additives mainly lead to improved sintering. Not only were dielectric properties influenced by oxide additives, such as the Curie temperature ( T c) and dielectric loss ( D ), but also the ferroelectricity was modified. A relatively large remanent polarization was produced, ranging from 16 μC/cm2 for pure NKN to 23 μC/cm2 for ZnO-added NKN samples. The following dielectric and piezoelectric properties were obtained: relative permittivity ɛ T 33 0 =570–650, planar mode electromechanical coupling factor, k p=32%–44%, and piezoelectric strain constant, d 33=92–117 pC/N.  相似文献   

11.
The microstructural development of crystalline-oriented (K0.5Na0.5)NbO3 (KNN)-based piezoelectric ceramics during sintering was investigated. The addition of CuO as a sintering aid was found to be effective for fabricating highly oriented and dense KNN ceramics. KNN specimens containing 0.5–1.0 mol% CuO sintered at 1100°C for 1 h were found to have relative densities and pseudo-cubic {100} orientation degrees of 95% or higher. In the early stages of sintering, KNN is formed in the reaction between complementary reactants NaNbO3 and KNbO3, after which oriented grain growth proceeds at a relative density of more than 90%. In addition, the results of transmission electron microscopy observation showed that textured KNN ceramics have a unique pectinate-like domain structure with domain walls consisting of {101} planes.  相似文献   

12.
A barium titanate precursor with a barium:titanium ratio of 1:4 was prepared by controlled coprecipitation of mixed barium and titanium species with an ammonium oxalate aqueous solution at pH 7. The results of thermal analysis and IR measurement show that the obtained precursor is a mixture of BaC2O4·0.5H2O and TiO(OH)2·1.5H2O in a molar ratio of 1:4. Crystallized BaTi4O9 was obtained by the thermal decomposition of a precipitate precursor at 1300°C for 2 h in air. The dimensions of the powder calcined at 1000°C are between 100 and 300 nm. The grain dimensions of the sintered sample for 2 h at 1300°C are of the order of 10 to 30 μm. Dielectric properties of disk-shaped sintered specimens in the microwave frequency region were measured using the TE011 mode. Excellent microwave characteristics for BaTi4O9—ɛ= 38 ± 0.5, Q = 3800–4000 at 6–7 GHz and τ f = 11 ± 0.7 ppm/°C—were found.  相似文献   

13.
The Cu-modified (Na0.5K0.5)0.96Li0.04Ta0.1Nb0.9O3 lead-free piezoelectric ceramics were fabricated at relatively low temperatures by ordinary sintering. The results indicate that the addition of copper oxide (CuO) does not change the crystal structure and the dielectric–temperature characteristic, but tends to slightly increase the loss tangent and significantly modify the ferroelectric and electromechanical properties. Moreover, the grains get clearly coarsened with increasing CuO content. When doped with <0.25% CuO, the materials get softer with slightly decreased coercive fields ( E c) and increased maximum electric field-driven strains ( S m), and thus own enhanced piezoelectric properties; however, as the doping level becomes higher, the materials get harder, possessing larger E c and reduced remanent polarization and S m. The change in the electrical properties can be attributed to both the formation of oxygen vacancies by Cu2+ replacing Nb5+ and the modification of densification.  相似文献   

14.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

15.
(1− x )(Na0.5K0.5)NbO3– x LiNbO3 [(1− x )NKN– x LN] ceramics were produced by the conventional solid-state sintering method, and their microstructure and piezoelectric properties were investigated. The formation of the liquid phase and K6Li4Nb10O30 second phase that were observed in the (1− x )NKN– x LN ceramics was explained by the evaporation of Na2O during the sintering. A morphotropic phase boundary (MPB) was observed in the specimens with 0.05< x <0.08. Promising piezoelectric properties were obtained for the specimens with x =0.07. Therefore, the piezoelectric properties of this 0.93NKN–0.07LN ceramic were further investigated and were found to be influenced by their relative density and grain size. In particular, grain size considerably affected the d 33 value. Two-step sintering was conducted at different temperatures to increase the grain size. Piezoelectric properties of d 33=240 (pC/N) and k p=0.35 were obtained for the 0.93NKN–0.07LN ceramics sintered at 1030°C and subsequently annealed at 1050°C.  相似文献   

16.
The effects of lead content on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5)O3 ceramics were investigated. Specimens with various lead concentrations were prepared by the conventional oxide-mixing method. When the lead concentration was slightly less than the stoichiometric amount, a large amount of pyrochlore phase was formed along with the perovskite phase. On the other hand, excessive amounts of lead led to the formation of PbO on the surface of the specimen. These second phases were seriously detrimental to electromechanical properties. The highest piezoelectric properties were observed when an excess of 1 mol% lead was added. By optimizing the specimen composition, excellent piezoelectric and dielectric properties ( k p= 0.7, d 33= 490 pC/N, and ɛm= 15000) were obtained.  相似文献   

17.
Lead-free piezoelectric (K0.5Na0.5)NbO3– x wt% Bi2O3 ceramics have been synthesized by an ordinary sintering technique. The addition of Bi2O3 increases the melting point of the system and improves the sintering temperature of (K0.5Na0.5)NbO3 ceramics. All samples show a pure perovskite phase with a typical orthorhombic symmetry when the Bi2O3 content <0.7 wt%. The phase transition temperature of orthorhombic–tetragonal ( T O − T ) and tetragonal–cubic ( T C) slightly decreased when a small amount of Bi2O3 was added. The remnant polarization P r increased and the coercive field E c decreased with increasing addition of Bi2O3. The piezoelectric properties of (K0.5Na0.5)NbO3 ceramics increased when a small amount of Bi2O3 was added. The optimum piezoelectric properties are d 33=140 pC/N, k p=0.46, Q m=167, and T C=410°C for (K0.5Na0.5)NbO3–0.5 wt% Bi2O3 ceramics.  相似文献   

18.
(1− x )(Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 solid solution ceramics were successfully fabricated, exhibiting a continuous phase transition with changing x at room temperature from orthorhombic, to tetragonal, to cubic, and finally to tetragonal symmetries. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal ferroelectric phases was found at 2–3 mol% (Bi0.5K0.5)TiO3 (BKT), which brings about enhanced piezoelectric and electromechanical properties of piezoelectric constant d 33=192 pC/N and planar electromechanical coupling coefficient k p=45%. The MPB composition has a Curie temperature of 370°–380°C, comparable with that of the widely used PZT materials. These results demonstrate that this system is a promising lead-free piezoelectric candidate material.  相似文献   

19.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

20.
A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1− x )Ba3(ZnNb2)O9−( x )Ba3W2O9 system up to 2 mol% substitution ( x =0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1− x x )1/3(Nb1− x W x )2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x =0.006 comprised large ordered domains with a high lattice distortion ( c/a =1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors ( Q × f =1 18 000 at 8 GHz) reported for a niobate-based perovskite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号