首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Hearing aids have fundamental disadvantages: (1) stigmatization of the patient; (2) the sound is often found to be unsatisfactory due to the limited frequency range and undesired distortion; (3) in many patients, the ear canal fitting device generally necessary leads to an occlusion effect; (4) acoustic feedback when amplification is high. Conventional hearing aids transmit sound into the ear canal via a small microphone. Sound has the disadvantage of requiring high output sound pressure levels for its transmission. This along with the necessary miniaturization of the loudspeaker as well as the resonances and reflections in the closed ear canal contribute to the disadvantages mentioned. In contrast, implantable hearing aids do not make sound signals but micromechanical vibrations. An implantable hearing aid has an electromechanical transducer instead of the loudspeaker of a conventional hearing aid. The hearing signal does not leave the transducer as sound but as a mechanical vibration which is directly coupled to the auditory system bypassing the air. This implantable hearing aid is either coupled to the tympanic membrane, the ossicular chain, the perilymph of the inner ear, or the skull. An implantable hearing aid is expected to have: 1 Better sound fidelity than a hearing aid 2 No ear canal fitting device, free ear canal 3 No feedback 4 Invisibility Requirements on electronic hearing implants designed for patients with conductive hearing loss differ from those on implants for sensorineural hearing loss. Conductive hearing loss requires the implant to replace the impedance transformation, thus being an impedance transformation implant (ITI). In various respects, the demands on an ITI are lower than the demands on an electronic hearing aid for patients with sensorineural hearing loss. The latter are mostly patients with a failure of the cochlea amplifier (CA). A damage to the CA is clinically discernible by a positive recruitment and loss of otoacoustic emissions (OAE). Since these patients form the majority of cases with sensorineural hearing loss, an active hearing implant for such patients should partially replace the function of the CA. Therefore, the suggestion is to refer to a CAI (cochlea amplifier implant). The implant expressions ITI (for patients with conductive hearing loss) and CAI (for patients with sensorineural hearing loss) used in this context allow nomenclatural association with the CI (cochlear implant) for complete inner ear failure as well as with the BSI (brainstem implant) in the case of hearing nerve failure.  相似文献   

2.
Isochronic mapping involves recording multi-channel evoked potentials from scalp electrodes and plotting contours of peak latencies. In this study, auditory brainstem responses were recorded from 20 electrode sites for left, right and binaural stimulation of each ear of 10 male and 10 female, normally hearing, young adults. Analysis of the data showed that the stimulus parameters of intensity, polarity and rate had no significant effect on the maps. On monaural stimulation, wave V was recorded first at the contralateral mastoid and ipsilaterally frontally and last at the ipsilateral mastoid some 350, mu s later. Binaural stimulation gave a symmetrical map, with wave V recorded first frontally and last at the occiput. In contrast, wave III was recorded first ipsilaterally and frontally and last at the contralateral mastoid. Wave II was recorded first at the rear of the contralateral mastoid and last forward of the ipsilateral mastoid. Comparisons between these results and human physiological studies are in agreement for waves V and III but do not support the concept of the VIIth nerve alone as the generator for wave II. These results suggest that this technique is a potentially useful diagnostic tool and it is intended to evaluate it by testing patients with a range of sensory, peripheral-neural and central-neural pathologies.  相似文献   

3.
It is now generally accepted that otoacoustic emissions (OAE) represent the only objective and non-intrusive means of functional exploration of the active micromechanical characteristics of the outer hair cells of the organ of Corti. Previous studies showed a decrease of the transiently evoked otoacoustic emissions and spontaneous otoacoustic emissions in humans, during acoustic stimulation of the contralateral ear, and attributed this effect to the medial efferent system. Such an effect has been shown on acoustic distortion product otoacoustic distortion emissions (DPOAE) in guinea pigs, but has not been investigated for DPOAEs recorded in humans, although DPOAEs represent the easiest means of exploring active micromechanical cochlear properties both in humans and in laboratory animals. The present study sought to investigate the existence and characteristics of a contralateral auditory stimulation effect on DPOAEs recorded in humans. This study shows that contralateral broad-band noise (BBN) has a suppressive effect on DPOAEs recorded from 0.5 kHz to 5 kHz. This effect is not due to air conduction, as no change in the noise floor occurred under increasing contralateral stimulation, and as no reduction in DPOAE amplitude was obtained in subjects whose contralateral ear was sealed with a plastic ear plug. Moreover, cross-over attenuation by bone transmission has been ruled out, as no change in DPOAE amplitude was recorded in the healthy ear of total unilaterally deaf patients during acoustic stimulation of the deaf ear. The effect seen was not entirely due to the acoustic reflex, as it was found and could indeed be even greater in subjects with no acoustic reflex. Results presented here show that the contralateral BBN effect is greater at low levels of ipsilateral stimulation, which leads us to discuss the involvement of both passive and active mechanisms in DPOAE generation at high stimulation levels. The contralateral BBN effect seems to be greater in mid frequency cochlear regions. There is strong evidence that the medial efferent system is involved and that afferent and efferent inputs are, at least partly, integrated at a brainstem level in order to ensure cochlear interaction. DPOAEs provide an interesting model for functional exploration of the efferent system, since they seem to be the only type of otoacoustic emission that can be recorded in both humans and in the majority of animals, and since results are obtained in the same way from both animals and humans, which allows experimental animal models very close to the human model.  相似文献   

4.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side.  相似文献   

5.
Generators of early cortical somatosensory evoked potentials (SEPs) still remain to be precisely localised. This gap in knowledge has often resulted in unclear and contrasting SEPs localisation in patients with focal hemispheric lesions. We recorded SEPs to median nerve stimulation in a patient with right frontal astrocytoma, using a 19-channel recording technique. After stimulation of the left median nerve, N20 amplitude was normal when recorded by the parietal electrode contralateral to the stimulation, while it was abnormally enhanced in traces obtained by the contralateral central electrode. The amplitude of the frontal P20 response was within normal limits. This finding suggests that two dipolar sources, tangential and radial to the scalp surface, respectively, contribute concomitantly to N20 generation. The possible location of the N20 radial source in area 3a is discussed. The P22 potential was also recorded with increased amplitude by the central electrode contralateral to the stimulation, while N30 amplitude was normal in frontal and central traces. We propose that the radial dipolar source of P22 response is independent from both N20 and N30 generators and can be located either in 3a or in area 4. This report illustrates the usefulness of multichannel recordings in diagnosing dysfunction of the sensorimotor cortex in focal cortical lesions.  相似文献   

6.
The dorsal nucleus of the lateral lemniscus (DNLL) is a binaural nucleus whose neurons are excited by stimulation of the contralateral ear and inhibited by stimulation of the ipsilateral ear. Here we report on several features of the ipsilaterally evoked inhibition in 95 DNLL neurons of the mustache bat. These features include its dependence on intensity, its tuning and the types of stimuli that are capable of evoking it. Inhibition was studied by evoking discharges with the iontophoretic application of glutamate, and then evaluating the strength and duration of the inhibition of the glutamate evoked background activity produced by stimulation of the ipsilateral ear. Excitatory responses were evoked by stimulation of the contralateral ear with best frequency (BF) tone bursts. Glutamate evoked discharges could be inhibited in all DNLL neurons and the inhibition often persisted for periods ranging from 10 to 50 ms beyond the duration of the tone burst that evoked it. The duration of the persistent inhibition increased with stimulus intensity. Stimulus duration had little influence on the duration of the persistent inhibition. Signals as short as 2 ms suppressed discharges for as long as 30 ms after the signal had ended. The frequency tuning of the total period of inhibition and the period of persistent inhibition were both closely matched to the tuning evoked by stimulation of the contralateral ear. Moreover, the effectiveness of complex signals for evoking persistent inhibition, such as brief FM sweeps and sinusoidally amplitude and frequency modulated signals, was comparable to that of tone bursts at the neuron's excitatory BF, so long as the complex signal contained frequencies at or around the neuron's excitatory BF. We also challenged DNLL cells with binaural paradigms. In one experiment, we presented a relatively long (40 ms) BF tone burst of fixed intensity to the contralateral ear, which evoked a sustained discharge, and a shorter, 10 ms signal of variable intensity to the ipsilateral ear. As the intensity of the 10 ms ipsilateral signal increased, it generated progressively longer periods of persistent inhibition and thus the discharges were suppressed for periods far longer than the 10 ms duration of the ipsilateral signal. With interaural time disparities, ipsilateral signals that led contralateral signals evoked a persistent inhibition that suppressed the responses to the trailing contralateral signals for periods of a least 15 ms. This suggests that an initial binaural sound that favors the ipsilateral ear should suppress the responses to trailing sounds that normally would be excitatory if they were presented alone. We hypothesize a circuit that generates the persistent inhibition and discuss how the results with binaural signals support that hypothesis.  相似文献   

7.
The accuracy with which behavioral comfort levels could be predicted by the electrically elicited acoustic reflex threshold (EART) was examined in 35 Nucleus Cochlear Implant patients (16 adults and 19 children). EARTs were obtained by stimulating bipolar pairs of electrodes through the Nucleus Diagnostic Programming System and monitoring the change in middle ear admittance in the ear contralateral to the implanted ear. EARTs were successfully elicited in 24 patients. EARTs differed from behavioral comfort levels by a mean of 19.4 stimulus level units for adults and 9.6 stimulus level units for children. While EARTs were found to be acceptably close to behavioral comfort levels in four adults and eight children, EARTs significantly overestimated or underestimated comfort levels in the rest. The results of this study suggested that while the EART does not accurately predict comfort levels in all cases, it may provide valuable information regarding levels which should not be exceeded when programming the cochlear implant. Cautious use of information available from the EART may prove useful for programming the cochlear implant in children or adults who are unable to make reliable psychophysical judgments.  相似文献   

8.
The objective of this study was to improve vestibular evoked potentials as a qualitative parameter for vestibular function in small laboratory animals. Linear upward acceleration pulses (up to 8 g within 1 ms) were applied to the head of anesthetized chinchillas. Electrophysiologic responses recorded by a chronically implanted electrode within the facial nerve canal consisted of an initial negative potential, labeled N1, within the first millisecond following the onset of acceleration. This potential was followed by a series of positive and negative potentials found to be highly labile to acoustic masking. The initial negative potential was only minimally sensitive to acoustic masking and persisted following surgical cochlear ablation, but completely disappeared following administration of potassium chloride into the inner ear. Recorded from the contralateral ear, N1 was unaffected by these procedures. Amplitudes of N1 decreased with attenuating stimulus intensity (1.45 microV/dB), whereby N1 latencies slightly increased (-0.015 ms/dB). These data, when coupled with the ability to completely abolish N1 with potassium intoxication while the contralateral ear remained intact, indicate that this potential represents electrophysiologic activity resulting from activation of the ipsilateral vestibular labyrinth.  相似文献   

9.
We performed a case study and intervention study, with follow-up of 1 to 5 years, in 4 children with inner ear malformations who underwent implantation of a multichannel cochlear implant (Nucleus, Cochlear Corporation) at ages 3 to 12 years. Malformations included a common cavity deformity, 2 incomplete partitions, and 1 case of isolated bilateral vestibular aqueduct enlargement. One child had a single-channel implant placed at 3 years of age, and this was exchanged for a 22-channel implant at age 9. One child had her implant placed at age 4.5 years, but due to complications from a cerebrospinal fluid (CSF) leak had the initial implant removed and replaced at age 5 years during repair of the CSF leak. Intraoperative findings included a CSF leak at the time of surgery in 3 patients. One patient contracted bacterial meningitis 7 months postimplantation that was thought to be secondary to acute otitis media in the unoperated ear. Bilateral CSF leaks were noted in the middle ear by a lumbar puncture radionuclide and fluorescein dye study. Successful repair of the CSF leaks and reimplantation of the cochlear implant was carried out in this patient. Mapping and programming of the implant was found to be challenging in each of these patients. All patients demonstrated improved performance after implantation. Two patients demonstrated some open-set speech perception. One patient demonstrates improved use of temporal cues in a structured closed set. One patient has achieved no significant speech recognition at this time, but does have improved sound detection and awareness. Cochlear implantation in children with congenital inner ear abnormalities can be a successful method of rehabilitation. It should be recognized that the postoperative speech perception results may be highly variable among patients, and that intraoperative complications may occur.  相似文献   

10.
Vagus nerve stimulation was recently approved for control of medically intractable seizures. This therapy provides some relief of seizures for selective patients, however seizure freedom using this device is uncommon. Vagus nerve stimulation appears to work by calming "hyperexcited" nerve cells and reverting brain activity to its normal patterns. Many people do have significant relief in the intensity and duration of their seizures and report improved quality of life using this device.  相似文献   

11.
1. We have shown previously that under free-field stimulation in the frontal field, frequency selectivity of the majority of inferior colliculus (IC) neurons became sharper when the loudspeaker was shifted to ipsilateral azimuths. These results indicated that binaural inhibition may be responsible for the direction-dependent sharpening of frequency selectivity. To test the above hypothesis directly, we investigated the frequency selectivity of IC neurons under several conditions: monaural stimulation using a semiclosed acoustical stimulation system, binaural stimulation dichotically also using a semiclosed system, free-field stimulation from different azimuths, and free-field stimulation when the ipsilateral ear was occluded monaurally (coated with a thick layer of petroleum jelly, which effectively attenuated acoustic input to this ear). 2. The binaural interaction pattern of 98 IC neurons of northern leopard frogs (Rana pipiens pipiens) were evaluated; of these neurons, there were 34 EE and 64 EO neurons. The majority of IC neurons (92 of 98) showed some degree of binaural inhibition (i.e., showing diminished response when the ipsilateral and contralateral ears were stimulated simultaneously) whether they were designated as EE or EO; these IC neurons thus were classified as EE-I or EO-I. Neurons were classified as exhibiting strong inhibition if the ILD function showed a pronounced response decrement, i.e., a decrease of > or = 50% of the response to monaural stimulation of the contralateral ear. Those neurons that showed smaller response decrements (decrease was > or = 25% but < 50%) were designated as showing weak inhibition. Most of these EE-I and EO-I neurons (n = 68) showed strong binaural inhibition. 3. In agreement with results from our earlier studies, frequency threshold curves (FTCs) of IC neurons were altered by sound azimuth. Independent of binaural interaction pattern, most IC neurons (59 of 98) showed a narrowing of the FTC as sound direction was changed from contralateral 90 deg (c90 degrees) to ipsilateral 90 deg (i90 degrees). IC neurons that exhibited the largest direction-dependent changes in frequency selectivity were typically those that displayed stronger binaural inhibition. Occlusion of the ipsilateral ear, which reduced the strength of binaural inhibition by this ear, abolished direction-dependent frequency selectivity. 4. FTCs of IC neurons that exhibited little to moderate direction-dependent effects on frequency selectivity were associated typically with neurons that displayed weak binaural inhibition. Associated with this weak binaural inhibition, central neural responses under monaural occlusion also displayed only small effects; the FTCs were only slightly broader than those derived in the intact condition, and as before, the experimental manipulation resulted in abolishment of direction-dependent frequency selectivity. 5. In contrast to most IC neurons, which showed direction-dependent narrowing of the FTC, about one-third (34 of 98) of IC neurons studied showed a broadening of the FTC when sound direction was shifted to ipsilateral azimuths. Interestingly, for 90% of these 34 neurons, monaural occlusion resulted in narrowing of the bandwidth at each azimuth instead of broadening of the FTC bandwidth. We have evidence to suggest that this direction-dependent broadening is actually a consequence of a truncation or loss of the tip of the FTC derived at c90 degrees, which results from strong binaural inhibition. 6. To compare the frequency threshold tuning in response to monaural stimulation of each ear with free-field FTCs, we measured FTCs for each of the 34 EE neurons to independent contralateral and ipsilateral stimulation. FTCs derived from ipsilateral monaural stimulation were significantly narrower than those resulting from contralateral monaural stimulation, independent of a neuron's direction-dependent changes in frequency selectivity.  相似文献   

12.
The activity of single neurons (n = 182) of the central nucleus of the inferior colliculus (CIC) of the rat was recorded in response to unilateral electrical stimulation of the left cochlea and/or acoustical stimulation of the right ear. The probability of response to both modes of stimulation was comparable (90 per cent for contralateral and 60 per cent for ipsilateral presentation). Response patterns consisted predominantly of onset excitations. Response latencies to electrical stimuli ranged from 3 to 21 ms, with an average value of 9.7 ms (SD = 3.5 ms) in the ipsilateral CIC and 6.6 ms (SD = 3.4 ms) in the contralateral CIC. With respect to binaural inputs, the majority of units were excited by stimulation of either ear (EE; about 60 per cent) while about one third were influenced by one ear only (EO). Units excited by one ear and inhibited by the other (EI) were rare. The main difference between the present implanted rats and normal animals was the virtual absence here of inhibitory effects for both types of stimuli when they were delivered to the ipsilateral ear (very few EI units).  相似文献   

13.
We studied the influence of contralateral and ipsilateral cutaneous digital nerve stimulation on motor evoked potentials (MEPs) elicited in hand muscles by transcranial magnetic stimulation (TMS). We tested the effect of different magnetic stimulus intensities on MEPs recorded from the thenar eminence (TE) muscles of the right hand while an electrical conditioning stimulus was delivered to the second finger of the same hand with an intensity four times above the sensory threshold. Amplitude decrement of conditioned MEPs as a function of magnetic stimulus intensity was observed. The lowest TMS stimulus intensity produced the largest decrease in conditioned MEPs. Moreover, we investigated the effects of ipsilateral and contralateral electrical digital stimulation on MEPs elicited in the right TE and biceps muscle using an intensity 10% above the threshold. Marked MEP inhibition in TE muscles following both ipsilateral and contralateral digital stimulation is the main finding of this study. The decrease in conditioned MEP amplitude to ipsilateral stimulation reached a level of 50% of unconditioned MEP amplitude with the circular coil and 30% with the focal coil. The amplitude of conditioned MEPs to contralateral digital stimulation showed a decrease of 60% with the circular coil and more than 50% with the focal coil. The onset of the inhibitory effect of contralateral stimulation using the focal coil occurred at a mean of 15 ms later than that of ipsilateral stimulation. No MEP inhibition was observed when recording from proximal muscles. Ipsilateral and contralateral digital stimulation had no effect on F wave at appropriate interstimulus intervals, where the main MEP suppression was noted. We stress the importance of selecting an appropriate test stimulus intensity to evaluate MEP inhibition by digital nerves stimulation. Spinal and cortical sites of sensorimotor integration are adduced to explain the direct and crossed MEP inhibition following digital nerves stimulation.  相似文献   

14.
Response properties of neurons in the central nucleus of the inferior colliculus (ICC) were investigated after unilateral cochlear removal at various ages during infancy. Nineteen ferrets had the right cochlea surgically ablated, either in adulthood or on postnatal day (P) 5, 25, or 40, 3-18 mo before recording. Adult ablations were made on the same day as ("acute," n = 3), or 2-3 mo before ("chronic," n = 3), recording. Two ferrets were left binaurally intact. Single-unit (n = 702) and multiunit (n = 1,819) recordings were made in the ICC of barbiturate-anesthetized ferrets ipsilateral (all ages) or contralateral (P5 and acute adult only) to the intact ear. In binaurally intact animals, tonal stimulation of the contralateral ear evoked excitatory activity at the majority (94%) of recording loci, whereas stimulation of the ipsilateral ear evoked activity at only 33% of recording loci. In acutely ablated animals, the majority of contralateral (90%) and ipsilateral (70%) loci were excited by tonal stimulation of the intact ear. In chronically ablated animals, 80-90% of loci were excited by ipsilateral stimulation. Single-unit thresholds were generally higher for low-best frequency (BF) than for high-BF units, and higher in the ipsilateral than in the contralateral ICC. Analysis of covariance showed highly significant differences between all of the ipsilateral and contralateral groups, but no effects of age at ablation or survival time following ablation, other than that the group ablated at P25 had higher mean ipsilateral thresholds than the groups ablated at P5 or, acutely, in adulthood. Cochlear ablation at P5, 25, or 40 resulted in a significant increase in dynamic ranges of ipsilateral ICC unit rate-intensity functions relative to acutely ablated animals. Dynamic ranges of units in the contralateral ICC of P5-ablated ferrets were also significantly increased compared with those of acutely ablated animals. Cochlear ablation at P5, 25, or 40 resulted in a significant increase in single-unit spontaneous discharge rates in the ICC ipsilateral but not contralateral (P5 only) to the intact ear. These data show that unilateral cochlear removal in adult ferrets leads to a rapid and dramatic increase in the proportion of neurons in the ICC ipsilateral to the intact ear that is excited by acoustic stimulation of that ear. In addition, the data confirm that, in ferrets, cochlear removal in infancy leads to a further increase in responsiveness of individual neurons in the ipsilateral ICC. Finally, the data show that responses in the ICC contralateral to the intact ear are largely but not completely unchanged by unilateral cochlear removal.  相似文献   

15.
Following monoaural stimulation, long latency auditory evoked potentials (LLAEPs) recorded from contralateral temporal areas have a shorter latency and larger amplitude than those recorded from the ipsilateral temporal areas. This observation agrees with the operational model drawn up in 1967 by Kimura, which assumes that only anatomically prevailing crossed auditory pathways are active during dichotic hearing, while direct pathways are inhibited. The inputs may then be conveyed to the contralateral cortex, from where they finally reach the ipsilateral temporal areas by means of interhemispheric commissures. It is this mechanism which may underline the right ear advantage for verbal stimuli and the left ear advantage for melodies observed when administering dichotic listening tasks. With the aim of verifying this hypothesis, we recorded temporal LLAEPs in a 21 year-old woman suffering from complex partial seizures, whose CT scan and MRI showed corpus callosum agenesia. Our data support the hypothesis that ipsilateral pathways are greatly inhibited by the contralateral pathways, and therefore auditory stimuli can be supposed to reach the contralateral auditory cortex from where they are transferred through the corpus callosum to the ipsilateral auditory cortex.  相似文献   

16.
A 19-year-old man who had fulminant heart failure caused by an idiopathic dilated cardiomyopathy was supported with a left ventricular assist device for 183 days as a bridge to heart transplantation. At the time of intended transplantation it was noted that the patient's heart had returned to normal size, had a normal ejection fraction, and was able to maintain normal pressures and flows. In view of the apparent recovery of cardiac properties, the left ventricular assist device was explanted and the transplantation was not performed. However, the heart dilated, ejection fraction worsened, and the patient died of heart failure exacerbated acutely by a systemic viral illness. Although such recovery of systolic function is uncommon, as use of the left ventricular assist devices becomes more widespread other physicians might encounter similar findings and, in this regard, they might find our experience useful as they contemplate their treatment options.  相似文献   

17.
OBJECTIVE: This study aimed to compare recordings of the electrically evoked whole nerve action potential (EAP) made using the reverse telemetry system of the Nucleus CI24M device with those recorded from individuals who use the Ineraid cochlear implant system. STUDY DESIGN: Data were collected in a prospective fashion from Nucleus CI24M cochlear implant users and compared with retrospective data collected from patients who use the Ineraid device. SETTING: All data were collected at the Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics. PATIENTS: Data are reported from 8 patients who use the Nucleus CI24M cochlear implant and 20 patients who use the Ineraid cochlear implant system. INTERVENTIONS: The interventions described in this study were diagnostic in nature. MAIN OUTCOME MEASURES: EAP growth and refractory recovery data are reported. EAP thresholds recorded from patients who use the Nucleus CI24M device also are compared with behavioral thresholds for the stimulus used to evoke the EAP as well as the stimulation levels needed to program the speech processor. RESULTS: EAP morphology, growth, and refractory recovery functions recorded using the Nucleus CI24M reverse telemetry system compared favorably with similar measures recorded from Ineraid cochlear implant users. CONCLUSIONS: Reasonable EAP responses can be recorded using the Nucleus CI24M device. More data are needed to determine whether the information about neural responsiveness available with this device will be clinically useful.  相似文献   

18.
The effect of electrical stimulation of the ventroposterolateral (VPL) thalamic nucleus on mechanical allodynia in the unrestrained awake rat was investigated. In 7 rats, a monopolar stimulation and recording electrode was implanted in the VPL thalamic representation area of the hindpaw. Exact target localisation was performed by means of thalamic evoked potentials induced by stimulating the contralateral tibial nerve. A peripheral mononeuropathy was induced by partly ligating the right sciatic nerve. Sensitivity of the hindpaws to mechanical stimulation was assessed with a set of von Frey hairs. One to 4 weeks after nerve ligation, all rats showed allodynia to mechanical stimulation and signs of spontaneous pain. Electrical stimulation of the contralateral VPL thalamic nucleus abolished the mechanical allodynia observed at the nerve ligated side. The effect of VPL stimulation outlasted the stimulation period by 15 min. No effect on the withdrawal thresholds at the control (sham operated) side was observed. These animals data support the clinical reports that stimulation of the sensory thalamus may alleviate pain of neuropathic origin.  相似文献   

19.
Further improvements in speech perception for cochlear implant patients in quiet and in noise should be possible with speech processing strategies using binaural implants. For this reason, presented here is a series of initial psychophysical and speech perception studies on the authors' first binaural cochlear implant patient. For an approximate matching of the places of stimulation on the two sides, the patient usually reported a single percept when the two sides were simultaneously stimulated. Lateralization was strongly influenced by amplitude differences between the electrical stimuli on the two sides, but only weakly by interaural time delays. Speech testing, comparing monaural with binaural electrical stimulation, showed a binaural advantage particularly in noise.  相似文献   

20.
In patients with some residual hearing and minor benefit from conventional hearing aids, the benefits of cochlear implantation have to be weighed carefully against eventual adverse effects. In this study, pre- and post-operative thresholds as well as functional results after cochlear implantation are reported; 17 of 44 implanted adults had residual hearing pre-operatively (mean threshold(250 to 4000 Hz): 106 dB HL) in the implanted ear. Residual hearing in the implanted ear could not, in general, be preserved post-operatively. Seventeen of 44 implanted children had some amount of residual hearing in the implanted ear pre-operatively (implanted ear: 114 dB HL; contralateral ear: 109.9 dB HL; mean thresholds(250 to 4000 Hz))). Contrary to the results in adults, residual hearing in the implanted ear remained statistically unchanged. Hearing in the contralateral ear increased significantly from 109.9 to 101.9 dB HL post-operatively. This increase was mainly attributed to maturation of the central auditory pathway. In adults with residual hearing, the monosyllable word recognition scores increased significantly from 9 per cent pre-operatively to 42 per cent post-operatively. Children with residual hearing tended to perform better on speech-related test material compared to children without prior auditory experience. Cochlear implantation is indicated in adults and children with residual hearing and minor benefit from conventional amplification. The contralateral ear in children should be considered for additional acoustical stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号