首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The p53 tumor suppressor gene is critical in regulating cell proliferation following DNA damage, and disruption of p53 protein function by mutation has been implicated as a factor responsible for resistance of tumor cells to chemotherapeutic agents. Our studies were initiated by asking whether the translational product of the p53 gene is associated with cisplatin resistance in the 2780CP human ovarian tumor model. We have demonstrated by single-strand conformation polymorphism analysis and sequencing that p53 in parental cisplatin-sensitive A2780 cells was wild type. In 2780CP cells, however, a mutation was found in exon 5 at codon 172 (Val to Phe). Interestingly, exposure to X-rays resulted in p53 induction in both A2780 and 2780CP tumor models. The p53 increases by the ionizing radiation were accompanied by concomitant increases in levels of the p53-regulated p21Waf1/Cip1 protein and led to arrest of cells in G1 phase of the cell cycle. A yeast functional assay confirmed that p53 in A2780 was wild type, but, more importantly, it provided evidence that the p53 mutation in 2780CP cells was temperature sensitive and heterozygous. These experiments demonstrate that sensitive and resistant cells have normal p53 functions, despite the presence of p53 mutation in the 2780CP model. In parallel investigations using the Western technique, exposure of A2780 cells to clinically relevant concentrations of cisplatin (1-20 microM) resulted in time- and dose-dependent increases in p53, together with coordinate increases in p21Waf1/Cip1. In contrast, cisplatin did not induce these proteins in 2780CP cells to any significant degree. The results indicate that a defect exists in the signal transduction pathway for p53 induction following cisplatin-induced DNA damage in 2780CP cells, and this may represent a significant mechanism of cisplatin resistance. Furthermore, induction of p53 in 2780CP cells by X-rays, but not cisplatin, strongly suggests that independent pathways are involved in p53 regulation for the two DNA-damaging agents.  相似文献   

2.
Expression of mdm-2 mRNA was measured in 90 ovarian-cancer tissue specimens using the S1 nuclease assay, to investigate a possible association between MDM2 expression and prognosis. mdm-2 mRNA expression was an independent prognostic factor for patients with primary ovarian cancer, FIGO (International Federation of Gynecology and Obstetrics) stages III and IV (n = 57), who all received chemotherapy with carboplatin or cisplatin and cyclophosphamide. Median survival time for patients (FIGO stages III and IV) with no detectable expression of mdm-2 mRNA (n = 14) was 171 days, as compared with 839 days for patients (n = 43) with detectable mdm-2 mRNA (p = 0.0194; log-rank test). However, no association between mdm-2 mRNA expression and survival was observed for patients with FIGO stages I and II who did not receive chemotherapy. mdm-2 expression was not associated with FIGO stage, residual disease, histologic grade and type. Our results suggest that mdm-2, which is known to disrupt p53 function, sensitizes ovarian-cancer cells to cisplatin/cyclophosphamide, possibly by inhibition of p53-mediated G1 cell-cycle arrest and p53-stimulated nucleotide-excision repair.  相似文献   

3.
The endothelium is one of the largest cellular compartments of the human body and has a high proliferative potential. However, angiosarcomas are among the rarest malignancies. Despite this interesting contradiction, data on growth and angiogenesis control mechanisms of angiosarcomas are scarce. In this study of 19 angiosarcomas and 10 benign vascular control lesions we investigated the sequence and expression of the p53 tumor suppressor gene and the expression of the mdm-2 proto-oncogene, which is a negative regulator of p53 activity and of the vascular endothelial growth factor (VEGF), whose expression, among other factors, is regulated by the p53/MDM-2 pathway. Ten sarcomas (53%) exhibited clear nuclear p53 protein accumulation. Two of these cases revealed mutations in the sequence-specific DNA binding domain of the p53 gene. Thirteen angiosarcomas (68%) showed an increased amount of MDM-2 protein. Elevated expression of p53 and MDM-2 protein correlated with increased VEGF expression, which was found in nearly 80% of the angiosarcoma cases. Negative or clearly lower immunostaining was obtained in cases from the benign control collective. Only one case of a juvenile hemangioma reached the cutoff value of p53 positivity coincidentally with high VEGF expression. Our data suggest that the p53/ MDM-2 pathway is impaired in about two-thirds (14/ 19) of the angiosarcomas. This may be a key event in the pathogenesis of human angiosarcomas. The increased VEGF expression observed supports this hypothesis.  相似文献   

4.
5.
6.
7.
8.
9.
PURPOSE: To determine whether potential alteration in p53 function through p53 gene mutation or mdm-2 overexpression correlates with early treatment failure in childhood acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS: Diagnostic marrow samples from 34 children were analyzed for p53 gene alterations by western blot and SSCP/DNA sequence analysis and for mdm-2 overexpression by western blot analysis. These samples were derived from two groups of children with ALL: 17 good outcome patients who are in long-term continuous complete remission and 17 poor outcome patients who did not achieve a complete remission or relapsed within 6 months of achieving remission. RESULTS: Two children within the poor outcome group were found to have p53 gene mutations. Furthermore, five poor outcome patients were shown to have greater than 10-fold overexpression of mdm-2 protein compared with the mean level of mdm-2 protein measured in the good outcome group. Aberrant p53 protein expression was found in only one good outcome patient, whereas no good outcome children were found to have elevated levels (> 10-fold) of mdm-2 protein. CONCLUSION: We show for the first time that potential alteration in p53 function in childhood ALL is more common (P = .036) in cases of early treatment failure than in children who remain in long-term continuous remission.  相似文献   

10.
In addition to binding DNA in a sequence-specific manner, p53 can interact with nucleic acids in a sequence-independent manner. p53 can bind short single-stranded DNA and double-stranded DNA containing nucleotide loops; these diverse associations may be critical for p53 signal transduction. In this study, we analyzed p53 binding to DNA fragments containing insertion/deletion mismatches (IDLs). p53 required an intact central domain and dimerization domain for high affinity complex formation with IDLs. In fact, the C terminus of p53 (amino acids 293-393) was functionally replaceable with a foreign dimerization domain in IDL binding assays. From saturation binding studies we determined that the KD of p53 binding to IDLs was 45 pM as compared with a KD of 31 pM for p53 binding to DNA fragments containing a consensus binding site. Consistent with these dissociation constants, p53-IDL complexes were dissociated with relatively low concentrations of competitor consensus site-containing DNA. Although p53 has a higher affinity for DNA with a consensus site as compared with IDLs, the relative number and availability of each form of DNA in a cell immediately after DNA damage may promote p53 interaction with DNA lesions. Understanding how the sequence-specific and nonspecific DNA binding activities of p53 are integrated will contribute to our knowledge of how signaling cascades are initiated after DNA damage.  相似文献   

11.
A p53 variant protein (p53as) generated from alternatively spliced p53 RNA is expressed in normal and malignant mouse cells and tissues, and p53as antigen activity is preferentially associated with the G2 phase of the cell cycle, suggesting that p53as and p53 protein may have distinct properties. Using p53as and p53 proteins translated in vitro, we now provide evidence that p53as protein has efficient sequence-specific DNA-binding ability. DNA binding by p53 protein is inefficient in comparison and requires activation. Furthermore, p53as and p53 proteins formed hetero-oligomers when co-translated in vitro, resulting in inactivation of p53as DNA-binding activity. Gel filtration indicated that p53as translated in vitro, like p53, formed tetramers. In support of a functional role of p53as in cells, p53as/p53 hetero-oligomers were coimmunoprecipitated from mouse cells, and both protein forms were detectable in nuclear extracts by electrophoretic mobility shift assays. These results suggest that the biochemical functions of p53 are mediated by interaction between two endogenous protein products of the wild-type p53 gene.  相似文献   

12.
13.
Expression of a p53-associated protein, Mdm-2 (murine double minute-2), can inhibit p53-mediated transactivation. In this study, overexpression of the Mdm-2 protein was found to result in the immortalization of primary rat embryo fibroblasts (REFs) and, in conjunction with an activated ras gene, in the transformation of REFs. The effect of wild-type p53 on the transforming properties of mdm-2 was determined by transfecting REFs with ras, mdm-2, and normal p53 genes. Transfection with ras plus mdm-2 plus wild-type p53 resulted in a 50% reduction in the number of transformed foci (relative to the level for ras plus mdm-2); however, more than half (9 of 17) of the cell lines derived from these foci expressed low levels of a murine p53 protein with the characteristics of a wild-type p53. These results are in contrast to previous studies which demonstrated that even minimal levels of wild-type p53 are not tolerated in cells transformed by ras plus myc, E1A, or mutant p53. The mdm-2 oncogene can overcome the previously demonstrated growth-suppressive properties of p53.  相似文献   

14.
15.
To investigate the effects of the expression of Bcl-2 protein in bladder cancer on the apoptosis induced by cisplatin or adenoviral-mediated p53 gene (Ad5CMV-p53) transfer, we transfected the bcl-2 gene into KoTCC-1, a human bladder cancer cell line that does not express the Bcl-2 protein. The Bcl-2-transfected KoTCC-1 (KoTCC-1/B) exhibited significantly higher resistance to both cisplatin and Ad5CMV-p53 transfer than did either the parental KoTCC-1 (KoTCC-1/P) or the vector-only transfected cell line (KoTCC-1/C). The flow cytometric analysis of the propidium iodide-stained nuclei and DNA fragmentation analysis after cisplatin or Ad5CMV-p53 treatment revealed DNA degradation in both KoTCC-1/P and KoTCC-1/C, whereas KoTCC1/B showed a marked inhibition of DNA degradation. Following the treatment with cisplatin or Ad5CMV-p53, the accumulation of p53 protein was highly detectable for a long period in KoTCC-1/B compared to that in KoTTC-1/P and KoTCC-1/C. Furthermore, the cisplatin and Ad5CMV-p53 treatments each reduced the volume of the subcutaneous tumors established in nude mice formed by KoTCC-1/P or KoTCC-1/C; in contrast, their reductive effects on the tumors formed by KoTCC-1/B were significantly suppressed. The intraperitoneal tumor cell implantation model revealed that the prognoses of mice injected with KoTCC-1/B were significantly inferior to those of the mice injected with either KoTCC-1/P or KoTCC-1/C after treatment with cisplatin or Ad5CMV-p53. These findings suggest that the expression of Bcl-2 in bladder cancer cells interferes with the therapeutic effects of cisplatin and Ad5CMV-p53 through the inhibition of the apoptotic pathway.  相似文献   

16.
Fractionation of human cell extracts by cisplatin-DNA affinity chromatography was employed to identify proteins capable of binding cisplatin-damaged DNA. A specific protein-DNA complex, termed DRP-3, was identified in an electrophoretic mobility shift assay (EMSA) using a cisplatin-damaged DNA probe. Using this assay we purified DRP-3 and the final fraction contained proteins of 70, 53, 46, 32, and 14 kDa. On the basis of subunit molecular weights, antibody reactivity, and DNA binding activities, DRP-3 was identified as human replication protein A (hRPA). Therefore, we assessed the binding of recombinant human RPA (rhRPA) to duplex cisplatin-damaged DNA in vitro. Global treatment of a highly purified completely duplex 44-bp DNA with cisplatin resulted in a 10-20-fold increase in rhRPA binding compared to the undamaged control. The stability of the RPA-DNA complexes was assessed, and NaCl and MgCl2 concentrations that completely inhibited rhRPA binding to undamaged DNA had only a minimal effect on binding to duplex platinated DNA. We assessed rhRPA binding to a duplex DNA containing a single site-specific 1,2-d(GpG) cisplatin adduct, and the results revealed a 4-6-fold increase in binding to this DNA substrate compared to an undamaged control DNA of identical sequence. These results are consistent with RPA being involved in the initial recognition of cisplatin-damaged DNA, possibly mediating DNA repair events. Therefore, we assessed how another cisplatin DNA binding protein, HMG-1, affected the ability of rhRPA to bind damaged DNA. Competition binding assays show minimal dissociation of either protein from cisplatin-damaged DNA during the course of the reaction. Simultaneous addition experiments revealed that HMG-1 binding to cisplatin-damaged DNA was minimally affected by rhRPA, while HMG-1 inhibited the damaged-DNA binding activity of rhRPA. These data are consistent with HMG-1 blocking DNA repair and possibly having the capability to enhance the cytotoxic efficacy of the drug cisplatin.  相似文献   

17.
18.
19.
The aim of this report was to investigate the expression of the p53 and mdm-2 oncoproteins in astrocytic gliomas and to assess their interrelation to proliferating activities. Using monoclonal antibodies directed against p53 and mdm-2, these proteins were stained immunohistochemically in 60 astrocytic brain tumors with different histologic grade. Positive p53 stained nuclei were detected in 25.4% of the tumor cases. Mdm-2 staining products were only localized in 10.5% of specimens. Significant correlations could be found between p53, MIB-1, PCNA and mitotic index on the one hand, and tumor grade on the other hand. There were no clear relations between mdm-2 expression and proliferation markers. The grade of ploidy has a lower priority for the proliferating activity. In most cases mdm-2 immunoreactivity was strongly associated with a low or negative p53 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号