首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In NURBS interpolation, real-time parameter update is an indispensable step which affects not only feedrate fluctuation but also contour error. Using Taylor approximation interpolation method to find the next interpolation point causes a large feedrate fluctuation due to the accumulation and truncation errors. This paper presents a new, simple, and precise NURBS interpolator for CNC systems. The proposed interpolation algorithm does not use Taylor’s expansion, but the recursive equation of the NURBS formula. A simulation study is conducted to demonstrate the advantages of this proposed interpolator compared with those using Taylor’s equation. It is readily seen that this interpolator using the new concept of interpolation for modern CNC systems is simple and precise. The proposed method can be used for interpolating a continuous NURBS curve.  相似文献   

2.
Real-time NURBS interpolator: application to short linear segments   总被引:2,自引:2,他引:0  
This study proposes the use of a real-time non-uniform rational B-spline (NURBS) interpolator with a look-ahead function to handle numerous short linear segments. The short linear segments conforming to the continuous short block (CSB) criterion can be fitted into NURBS curves in real time. A modified maximum feedrate equation based on the geometric characteristics of the fitting curves and the dynamics of the servo control system has been derived in this paper. Taking advantage of the multi-thread design and the look-ahead function, the real-time NURBS interpolator can process enough G01 block information and complete feedrate planning before interpolation. In addition, the S-shaped jerk-limited acceleration method is adopted for smoother feedrate profiles. Two part shapes, which possess more than 1,000 short linear segments, are tested on our PC-based real-time control system. Both simulation and experimental results verify the feasibility and precision of the proposed interpolation algorithm.  相似文献   

3.
In this paper, an adaptive parametric curve interpolator with a real-time look-ahead function is developed for non-uniform rational B-spline curves (NURBS) interpolation, which considers the maximum acceleration/deceleration of the machine tool. In the proposed interpolator, both constant feedrate and high accuracy are achieved while the inconsistency of feedrate is reduced dramatically as well. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, a look-ahead function is introduced to detect and adjust the feedrate adaptively. Two cases were respectively studied to evaluate the feasibility of the developed interpolator: one is for feedrate sensitive arc corner; the other is for feedrate sensitive sharp corner.  相似文献   

4.
The interpolator is the key part of a CNC system, which has strong effect on machining accuracy, tool motion smoothness, and machining efficiency. In this paper, a real-time adaptive interpolator is developed for non-uniform rational B-spline curves (NURBS) interpolation while considering the maximum acceleration/deceleration of the machine tool. In this proposed interpolator, both constant feedrate and high accuracy are achieved while the inconsistency of feedrate is dramatically reduced as well. In order to deal with the acceleration/deceleration around the feedrate-sensitive sharp corners, a look-ahead function is introduced to detect and adjust the feedrate adaptively. Furthermore, a parameter compensation scheme is proposed to eliminate the parametric truncation error which has been analyzed by several researchers but still not incorporated into any real-time interpolator so far. A case study was conducted to evaluate the feasibility of the developed interpolator.  相似文献   

5.
An iterative feedrate optimization method for real-time NURBS interpolator   总被引:1,自引:1,他引:0  
Non-uniform rational B-spline (NURBS) interpolator has been widely used in modern manufacturing systems to machine arbitrary geometries with great relief of the data flow bottleneck and feedrate fluctuation. However, in practice, real-time feedrate does not always meet the computer numerical control (CNC) command exactly subject to the system dynamics. To solve this problem, we present a real-time NURBS interpolator with feedrate optimization for CNC machining tools in this work. The parametric curve is first approximated with the Adams–Bashforth method which provides uniform feedrate in each sampling period in the interpolation process. And then, a feedback scheme is introduced to adjust the feedrate in real time so as to guarantee a specified deviation between the measured and the desired feedrate. The convergence condition for this closed-loop algorithm is presented and analyzed. Simulation and real experiments on an XY table are employed to verify its feasibility. And the comparisons with traditional interpolators based on Taylor's expansion are also provided to demonstrate its improvement in accuracy.  相似文献   

6.
Non-uniform rational b-spline (NURBS) tool path is becoming more and more important due to the increasing requirement for machining geometrically complex parts. However, NURBS interpolators, particularly related to five-axis machining, are quite limited and still keep challenging. In this paper, an adaptive feedrate scheduling method of dual NURBS curve interpolator with geometric and kinematic constraints is proposed for precision five-axis machining. A surface expressed by dual NURBS curves, which can continuously and accurately describe cutter tip position and cutter axis orientation, is first used to define five-axis tool path. For the given machine configuration, the calculation formulas of angular feedrate and geometric error aroused by interpolation are given, and then, the adaptive feedrate along the tool path is scheduled with confined nonlinear geometric error and angular feedrate. Combined with the analytical relations of feed acceleration with respect to the arc length parameter and feedrate, the feed profiles of linear and angular feed acceleration sensitive regions are readjusted with corresponding formulas and bi-directional scan algorithm, respectively. Simulations are performed to validate the feasibility of the proposed feed scheduling method of dual NURBS curve interpolator. It shows that the proposed method is able to ensure the geometric accuracy and good machining performances in five-axis machining especially in flank machining.  相似文献   

7.
This paper presents a real-time interpolation algorithm for NURBS curves. In contrast to the existing linear and circular interpolators, the proposed interpolator can maintain small contour errors and feedrate fluctuations. Feedrate components, acceleration components and the servomotor driving force for each axis are precalculated from the given curve shape and themachine tool dynamic properties. As a sudden change in the geometrical properties of the tool path can increase contour errors and cause a sudden change of driving force of each servomotor, a new strategy of variable feedrate machining based on the geometrical properties of tool path is suggested. Real-time performance measurement of this interpolator is performed to demonstrate its practical feasibility.  相似文献   

8.
A method for obtaining smooth, jerk bounded feedrate profile in high speed machining has been developed. This study proposes a NURBS interpolator based on adaptive feedrate control with a well developed lookahead algorithm. It is found that the values of the feedrate of the down stream sharp corner have profound effect on the feedrate of the upstream sharp corners causing a ripple effect (RE). By using a windowing scheme the feedrate profile obtained after lookahead is re-interpolated to obtain a continuous velocity and acceleration profiles which reduces the jerk related problems. This is compared with the adaptive NURBS interpolator to show the effectiveness of the proposed method. Simulation results indicate that the consideration of ripple effect is important in avoiding jerk and thereby increasing the machining accuracy.  相似文献   

9.
Various methods for parametric interpolation of non-uniform rational B-spline (NURBS) curves have been proposed in the past. However, the errors caused by the approximate nature of the NURBS interpolator were rarely taken into account. This paper proposes an integrated look-ahead algorithm for parametric interpolation along NURBS curves. The algorithm interpolates the sharp corners on the curve with the Pythagorean-hodograph (PH) interpolation. This will minimize the geometric and interpolator approximation errors simultaneously. The algorithm consists of four different modules: a sharp corner detection module, a PH construction module, a feedrate planning module, and a dynamics module. Simulations are performed to show correctness of the proposed algorithm. Experiments on an X?CY table confirm that the developed method improves tracking and contour accuracies significantly compared to previously proposed algorithms.  相似文献   

10.
Parametric interpolation has many advantages over the traditional linear or circular interpolation in computer numerical control (CNC) machining. The existing work in this regard is reported to have achieved constant feedrate, confined chord error and limited acceleration/deceleration in one interpolator. However, the excessive jerk still exists due to abrupt change in acceleration profile, which will cause shock to the machine as well as deteriorate the surface accuracy. In this paper, an adaptive interpolation scheme incorporating machine’s dynamics capability consideration is proposed and illustrated in details. In the proposed algorithm, the commanded feedrate is maintained at most of the time and adaptively reduced in large curvature areas to meet the demand of the machining accuracy requirement, while at the same time, the acceleration and jerk values are limited within the machine’s capabilities during the whole interpolation process. It ensures a high machining accuracy, eliminates the phenomenon of overshoot/undershoot and reduces mechanical shock to the machine tools. The real-time performance of this interpolator is also measured to demonstrate its practical application. Two non-uniform rational B-spline (NURBS) curve interpolation experiments are provided to verify the feasibility and advantages of the proposed scheme.  相似文献   

11.
林峰  张正红  陈胜 《中国机械工程》2012,23(9):1060-1064
提出了一种基于进给速度敏感点识别的NURBS曲线插补算法,该方法对于兼容NURBS形式的高档数控系统至关重要。粗插补计算造成的轮廓误差与插补经过该点时的进给速度大小有关,敏感点则可根据插补微段逼近时的弓高误差来界定。进而,根据相邻敏感点之间的距离,通过增设安全缓冲区等方法,进行速度曲线自适应规划。整体进给速度曲线可以由各部分进给速度曲线连接而成。为评价算法的有效性,采用3次NURBS曲线在三种不同进给速度指令下进行仿真计算。仿真结果证明,该算法很好地将轮廓精度和进给速度的平滑性进行了系统考虑,能在相邻危险点复杂分布的情况下执行柔性的插补控制。  相似文献   

12.
Curve interpolation with variable feedrate for surface requirement   总被引:1,自引:0,他引:1  
Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This function, called a NURBS interpolation, adopts a feedrate optimizing strategy based on both the geometrical information of the curved path and dynamic properties such as the curvature of the curve, the allowable acceleration and the time constant. However, in the case of a finish cut using a ball-end mill, the curve interpolator needs to take the machining process into account for improved surface roughness, while reducing the polishing time. This surface roughness on high-speed machining is theoretically defined by the feed per tooth and the pickfeed at the given radius of the tool. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A curve interpolation algorithm is proposed for generating particular feedrate commands that are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented. A feedrate scheme that depends on the inclination angle has important potential application in part finishes consistent with prescribed surface roughness. The results show that the proposed algorithm is potentially useful for roughness-controlled machining of curved surface products.  相似文献   

13.
Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.  相似文献   

14.
Modern motion control adopts acceleration/deceleration before interpolation (ADBI) motion planning to eliminate path command errors. However, the individual velocity profiles might not be continuous at the junction of the blocks. Acceleration/deceleration after interpolation (ADAI) method may provide an alternative for solving the discontinuous problems, but it causes path command errors. In this paper, an integrated acceleration/deceleration interpolation (IAD) scheme which integrates the ADBI and ADAI modules is proposed. The ADBI provides a look-ahead function which plans the feedrate profiles based on chord errors, command errors, curvatures, and acceleration limits. Within the look-ahead function, the command error equation is utilized to determine the feedrate at the junction of adjacent blocks. Then the ADBI performs non-uniform rational B-spline (NURBS) interpolation using the planned feedrate profile and outputs the position points to the ADAI module. The ADAI module processes the points by a digital convolution technique such that the continuity of the block junction velocity is ensured. Finally, the IAD is applied to the multi-block NURBS interpolation to validate its effectiveness. Simulations and experiments are conducted to demonstrate the IAD scheme. It is shown that the IAD scheme can reduce the acceleration significantly at the junctions of the blocks under the given tolerance of the command error. Furthermore, the proposed algorithm can improve tracking and contour accuracies as compared to the hybrid multi-blocks look-ahead approach.  相似文献   

15.
The design of a NURBS pre-interpolator for five-axis machining   总被引:1,自引:1,他引:0  
A non-uniform, rational B-spline (NURBS) interpolator has great advantages for free-form surface machining compared to the conventional linear/circular interpolator. However, the existing NURBS interpolators can only handle the NURBS trajectory given in a customized NURBS G code. Also, it is limited to three-axis applications. In this paper, a NURBS pre-interpolator with three function options is proposed for a computer numerical control (CNC) system so that the NURBS interpolator can be thoroughly applied for five-axis machining. The first function is called the NURBS converter function, which is used to convert a series of linear/circular segments exactly into a NURBS curve. The second function is the NURBS smoother function, by which, a series of linear segments are fitted to a NURBS curve. The third option provides two kinds of NURBS G codes definition, by which, the NURBS trajectory with five axes can be represented directly. Upon using the three options of the NURBS pre-interpolator, a unified NURBS curve can be obtained for further interpolation. Two actual machining cases are conducted to evaluate the feasibility of the proposed pre-interpolator.  相似文献   

16.
根据计算机数字控制系统的实际性能和非均匀有理B样条曲线的几何特性,设计了一种能够实现加速度平滑过渡的高效非均匀有理B样条曲线插补器。首先,该插补器利用快速插补计算模拟实际加工过程,找到加速度不连续的点;然后,采用S曲线加减速方法向后逆求减速点,并通过约束速度和加速度的方法,预估S曲线加减速第三阶段起点,不仅提高了所求减速点位置的精度,还实现了减速点处加速度的连续性。仿真结果表明,该插补器能在保证加工精度的前提下,以较高效率实现加速度的平滑过渡。  相似文献   

17.
以NURBS曲线deBoor递推插补算法为基础,针对NURBS曲线速度处理的特殊性,建立了一种NURBS曲线自适应速度控制模型,该模型分为速度自适应控制和插补前加减速处理两部分。以deBoor算法为基础对整个插补周期的弓高误差以及切向和法向加速度进行实时监控,分析了误差产生的原因并进行了相应的速度控制;以插补前直线加减速为例引入NURBS反向插补的概念,解决了NURBS曲线减速区长度计算问题。实验结果表明,该模型满足实际的NURBS曲线插补的需要。  相似文献   

18.
NURBS曲线S形加减速双向寻优插补算法研究   总被引:6,自引:0,他引:6  
由于非均匀有理B样条(Non-uniform rational B-splines,NURBS)曲线的弧长与参数之间无精确解析关系,并且进给速度总是受到非线性变化的曲线曲率的约束,因此基于S形加减速进行NURBS曲线插补时,减速点难以准确预测。传统算法通常是沿曲线单方向插补,不仅未考虑曲率对进给速度的持续限制,而且加减速分类与计算公式复杂。为此,提出运动路程未知情况下不依赖于弧长精确计算的正向和反向同步加速的插补新算法,实时动态地求解曲线段内最大进给速度和正反向插补会合点,从而实现处处满足全部速度约束条件的最优插补。该算法无需求解高次方程与繁琐的加减速模式分类,并可保证以确定的速度通过曲率极值点和曲线终点。通过两个插补实例证明算法简明高效,适应性好,能够满足高速高精度数控要求。  相似文献   

19.
为兼顾插补含尖角NURBS曲线的精度与速度,提出尖角分割且速度修正插补算法。由插补弦高误差限、法向加速度及其导数约束,得满足插补精度及机床动力学性能的临界曲率;用大于临界曲率的局部极大曲率及临界曲率分割NURBS曲线为是否包含尖角的若干子段;用S曲线加减速算法规划各子段进给速度,并用段间速度及位移协调关系修正各段加速度及其导数,使各段加减速时间为整数倍插补周期。在相同约束条件下,分别用曲率单调无速度修正、尖角分割无速度修正及尖角分割有速度修正算法,规划一条含大曲率尖角NURBS曲线插补速度,并用一阶泰勒级数展开算法插补该曲线。对比结果表明尖角分割且有速度修正算法可稳定得到较高插补精度,因此该算法可用于含大曲率尖角NURBS曲线高速度高精度加工。  相似文献   

20.
The utilization of the non-uniform rational B-spline (NURBS) toolpaths becomes more important than ever before. However, in traditional milling electrical discharge machining (EDM) of parametric curves, there commonly exist problems such as speed loss and an overincreased sampling period, which directly cause a decrease in machining efficiency. Moreover, traditional approaches normally suffer from a complex toolpath planning. In this paper, a real-time interpolator with a constant segment length is proposed to improve the milling EDM of NURBS curves. The proposed interpolator can directly process NURBS curves with their definition information. The toolpath planning can thus become simpler. A new two-stage interpolation method is adopted such that both a high speed accuracy and a relatively short sampling period can be achieved, and the magnitude of chord errors can also be reduced. While the first-stage interpolation samples a NURBS curve with a constant-length segment, the second-stage interpolation, or the re-interpolation, executes multiple interpolations in a sampling period to generate the required feed rate. A loop buffer is designed for the implementation of the real-time interpolator. Experimental results show that the proposed interpolator demonstrates a superior machining performance to that by traditional interpolators, especially in terms of chord errors and erosion rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号