首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a two-level hierarchy for planning collision-free trajectories in time varying environments. Global geometric algorithms for trajectory planning are used in conjunction with a local avoidance strategy. Simulations have been developed for a mobile robot in the plane among stationary and moving obstacles. Essentially, the robot has a global geometric planner that provides a coarse global trajectory (the path and velocity along it), which may be locally modified by the low-level local avoidance module if local sensors detect any obstacles in the vicinity of the robot. This hierarchy makes effective use of the complementary aspects of the global trajectory planning approaches and the local obstacle avoidance approaches.  相似文献   

2.
《Advanced Robotics》2013,27(6):515-536
We present a real implemented eye-in-hand test-bed system for sensor-based collision-free motion planning for articulated robot arms. The system consists of a PUMA 560 with a triangulation-based area-scan laser range finder (the eye) mounted on its wrist. The framework for our planning approach is inspired by recent motion planning research for the classical model-based case (known environment) and incrementally builds a roadmap that represents the connectivity of the free configuration space, as the robot senses the physical environment. We present some experimental results with our sensor-based planner running on this real test-bed. The robot is started in completely unknown and cluttered environments. Typically, the planner is able to reach (planning as it senses) the goal configuration in about 7-25 scans (depending on the scene complexity), while avoiding collisions with the obstacles throughout.  相似文献   

3.
In the future, many teams of robots will navigate in home or office environments, similar to dense crowds operating currently in different scenarios. The paper aims to route a large number of robots so as to avoid build-up of congestions, similar to the problem of route planning of traffic systems. In this paper, first probabilistic roadmap approach is used to get a roadmap for online motion planning of robots. A graph search-based technique is used for motion planning. In the literature, typically the search algorithms consider only the static obstacles during this stage, which results in too many robots being scheduled on popular/shorter routes. The algorithm used here therefore penalizes roadmap edges that lie in regions with large robot densities so as to judiciously route the robots. This planning is done continuously to adapt the path to changing robotic densities. The search returns a deliberative trajectory to act as a guide for the navigation of the robot. A point at a distant of the deliberative path becomes the immediate goal of the reactive system. A ‘centre of area’-based reactive navigation technique is used to reactively avoid robots and other dynamic obstacles. In order to avoid two robots blocking each other and causing a deadlock, a deadlock avoidance scheme is designed that detects deadlocks, makes the robots wait for a random time and then allows them to make a few random steps. Experimental results show efficient navigation of a large number of robots. Further, routing results in effectively managing the robot densities so as to enable an efficient navigation.  相似文献   

4.
Interactive robot doing collaborative work in hybrid work cell need adaptive trajectory planning strategy. Indeed, systems must be able to generate their own trajectories without colliding with dynamic obstacles like humans and assembly components moving inside the robot workspace. The aim of this paper is to improve collision-free motion planning in dynamic environment in order to insure human safety during collaborative tasks such as sharing production activities between human and robot. Our system proposes a trajectory generating method for an industrial manipulator in a shared workspace. A neural network using a supervised learning is applied to create the waypoints required for dynamic obstacles avoidance. These points are linked with a quintic polynomial function for smooth motion which is optimized using least-square to compute an optimal trajectory. Moreover, the evaluation of human motion forms has been taken into consideration in the proposed strategy. According to the results, the proposed approach is an effective solution for trajectories generation in a dynamic environment like a hybrid workspace.  相似文献   

5.
《Advanced Robotics》2013,27(8):673-699
This paper deals with motion planning on rough terrain for mobile robots. The aim is to develop efficient algorithms, suitable for various types of robots. On rough terrain, the planned trajectory must verify several validity constraints : stability of the robot, mechanical limits and collision avoidance with the ground. Our approach relies on a static and kinematic model of the robot. Efficient geometric algorithms have been developed, taking advantage of each vehicle's specificities. Motion planning relies on an incremental search in the discretized configuration space and uses efficient heuristics based on terrain characteristic to limit the size of the search space. Simulation results present trajectories planned in a few seconds. The second part takes into account uncertainties to improve trajectory robustness: uncertainties on the terrain model and the position of the robot. The adaptation of the previous algorithms allows us to find robust trajectories, without any excessive time increase.  相似文献   

6.
A new fuzzy-based potential field method is presented in this paper for autonomous mobile robot motion planning with dynamic environments including static or moving target and obstacles. Two fuzzy Mamdani and TSK models have been used to develop the total attractive and repulsive forces acting on the mobile robot. The attractive and repulsive forces were estimated using four inputs representing the relative position and velocity between the target and the robot in the x and y directions, in one hand, and between the obstacle and the robot, on the other hand. The proposed fuzzy potential field motion planning was investigated based on several conducted MATLAB simulation scenarios for robot motion planning within realistic dynamic environments. As it was noticed from these simulations that the proposed approach was able to provide the robot with collision-free path to softly land on the moving target and solve the local minimum problem within any stationary or dynamic environment compared to other potential field-based approaches.  相似文献   

7.
针对障碍环境下具有非完整约束月球车的运动规划问题,提出了一种基于离散化位姿的月球车运动规划方法。该方法首先将月球车的运动轨迹限定于多项式旋线,通过求解多项式旋线参数生成无障碍条件下连接任意位姿状态的运动轨迹。同时,该方法对月球车运动规划问题中的位姿状态空间进行离散化,形成离散化的位姿状态空间。根据离散化位姿状态空间的特点,在离线的条件下生成连接相邻离散位姿的月球车基本的运动轨迹集。最后该方法结合基本运动轨迹集并利用启发式搜索算法最终解决障碍条件下的运动规划问题。基于动力学仿真平台中的实验结果验证了该方法的正确性和有效性。  相似文献   

8.
《Advanced Robotics》2013,27(5):565-578
Mobile robots for advanced applications have to act in environments which contain moving obstacles (humans). Even though the motions of such obstacles are not precisely predictable, usually they are not completely random; long-term observation of obstacle behavior may thus yield valuable knowledge about prevailing motion patterns. By incorporating such knowledge as statistical data, a new approach called statistical motion planning yields robot motions which are better adapted to the dynamic environment. To put these ideas into practice, an experimental system has been developed. Cameras observe the workspace in order to detect obstacle motion. Statistical data is derived and represented as a set of stochastic trajectories. This data can be directly employed in order to calculate collision probability, i.e. the probability of encountering an obstacle during the robot's motion. Further aspects of motion planning are addressed: path planning which minimizes collision probability, estimation of expected time to reach the goal and reactive planning.  相似文献   

9.
We present a practical approach to global motion planning and terrain assessment for ground robots in generic three‐dimensional (3D) environments, including rough outdoor terrain, multilevel facilities, and more complex geometries. Our method computes optimized six‐dimensional trajectories compliant with curvature and continuity constraints directly on unordered point cloud maps, omitting any kind of explicit surface reconstruction, discretization, or topology extraction. We assess terrain geometry and traversability on demand during motion planning, by fitting robot‐sized planar patches to the map and analyzing the local distribution of map points. Our motion planning approach consists of sampling‐based initial trajectory generation, followed by precise local optimization according to a custom cost measure, using a novel, constraint‐aware trajectory optimization paradigm. We embed these methods in a complete autonomous navigation system based on localization and mapping by means of a 3D laser scanner and iterative closest point matching, suitable for both static and dynamic environments. The performance of the planning and terrain assessment algorithms is evaluated in offline experiments using recorded and simulated sensor data. Finally, we present the results of navigation experiments in three different environments—rough outdoor terrain, a two‐level parking garage, and a dynamic environment, demonstrating how the proposed methods enable autonomous navigation in complex 3D terrain.  相似文献   

10.
The problem of path planning deals with the computation of an optimal path of the robot, from source to destination, such that it does not collide with any obstacle on its path. In this article we solve the problem of path planning separately in two hierarchies. The coarser hierarchy finds the path in a static environment consisting of the entire robotic map. The resolution of the map is reduced for computational speedup. The finer hierarchy takes a section of the map and computes the path for both static and dynamic environments. Both the hierarchies make use of an evolutionary algorithm for planning. Both these hierarchies optimize as the robot travels in the map. The static environment path is increasingly optimized along with generations. Hence, an extra setup cost is not required like other evolutionary approaches. The finer hierarchy makes the robot easily escape from the moving obstacle, almost following the path shown by the coarser hierarchy. This hierarchy extrapolates the movements of the various objects by assuming them to be moving with same speed and direction. Experimentation was done in a variety of scenarios with static and mobile obstacles. In all cases the robot could optimally reach the goal. Further, the robot was able to escape from the sudden occurrence of obstacles.  相似文献   

11.
To ensure the collision safety of mobile robots, the velocity of dynamic obstacles should be considered while planning the robot’s trajectory for high-speed navigation tasks. A planning scheme that computes the collision avoidance trajectory by assuming static obstacles may result in obstacle collisions owing to the relative velocities of dynamic obstacles. This article proposes a trajectory time-scaling scheme that considers the velocities of dynamic obstacles. The proposed inverse nonlinear velocity obstacle (INLVO) is used to compute the nonlinear velocity obstacle based on the known trajectory of the mobile robot. The INLVO can be used to obtain the boundary conditions required to avoid a dynamic obstacle. The simulation results showed that the proposed scheme can deal with typical collision states within a short period of time. The proposed scheme is advantageous because it can be applied to conventional trajectory planning schemes without high computational costs. In addition, the proposed scheme for avoiding dynamic obstacles can be used without an accurate prediction of the obstacle trajectories owing to the fast generation of the time-scaling trajectory.  相似文献   

12.
The capability of following a moving target in an environment with obstacles is required as a basic and necessary function for realizing an autonomous unmanned surface vehicle (USV). Many target following scenarios involve a follower and target vehicles that may have different maneuvering capabilities. Moreover, the follower vehicle may not have prior information about the intended motion of the target boat. This paper presents a trajectory planning and tracking approach for following a differentially constrained target vehicle operating in an obstacle field. The developed approach includes a novel algorithm for computing a desired pose and surge speed in the vicinity of the target boat, jointly defined as a motion goal, and tightly integrates it with trajectory planning and tracking components of the entire system. The trajectory planner generates a dynamically feasible, collision-free trajectory to allow the USV to safely reach the computed motion goal. Trajectory planning needs to be sufficiently fast and yet produce dynamically feasible and short trajectories due to the moving target. This required speeding up the planning by searching for trajectories through a hybrid, pose-position state space using a multi-resolution control action set. The search in the velocity space is decoupled from the search for a trajectory in the pose space. Therefore, the underlying trajectory tracking controller computes desired surge speed for each segment of the trajectory and ensures that the USV maintains it. We have carried out simulation as well as experimental studies to demonstrate the effectiveness of the developed approach.  相似文献   

13.
Potential field method has been widely used for mobile robot path planning, but mostly in a static environment where the target and the obstacles are stationary. The path planning result is normally the direction of the robot motion. In this paper, the potential field method is applied for both path and speed planning, or the velocity planning, for a mobile robot in a dynamic environment where the target and the obstacles are moving. The robot’s planned velocity is determined by relative velocities as well as relative positions among robot, obstacles and targets. The implementation factors such as maximum linear and angular speed of the robot are also considered. The proposed approach guarantees that the robot tracks the moving target while avoiding moving obstacles. Simulation studies are provided to verify the effectiveness of the proposed approach.  相似文献   

14.
This paper presents a methodology based on a variation of the Rapidly-exploring Random Trees (RRTs) that generates feasible trajectories for a team of autonomous aerial vehicles with holonomic constraints in environments with obstacles. Our approach uses Pythagorean Hodograph (PH) curves to connect vertices of the tree, which makes it possible to generate paths for which the main kinematic constraints of the vehicle are not violated. These paths are converted into trajectories based on feasible speed profiles of the robot. The smoothness of the acceleration profile of the vehicle is indirectly guaranteed between two vertices of the RRT tree. The proposed algorithm provides fast convergence to the final trajectory. We still utilize the properties of the RRT to avoid collisions with static, environment bound obstacles and dynamic obstacles, such as other vehicles in the multi-vehicle planning scenario. We show results for a set of small unmanned aerial vehicles in environments with different configurations.  相似文献   

15.
A reactive navigation system for an autonomous mobile robot in unstructured dynamic environments is presented. The motion of moving obstacles is estimated for robot motion planning and obstacle avoidance. A multisensor-based obstacle predictor is utilized to obtain obstacle-motion information. Sensory data from a CCD camera and multiple ultrasonic range finders are combined to predict obstacle positions at the next sampling instant. A neural network, which is trained off-line, provides the desired prediction on-line in real time. The predicted obstacle configuration is employed by the proposed virtual force based navigation method to prevent collision with moving obstacles. Simulation results are presented to verify the effectiveness of the proposed navigation system in an environment with multiple mobile robots or moving objects. This system was implemented and tested on an experimental mobile robot at our laboratory. Navigation results in real environment are presented and analyzed.  相似文献   

16.
A new technique for enhancing global path planning for mobile robots working in partially known as indoor environments is presented in this paper. The method is based on a graph approach that adapts the cost of the paths by incorporating travelling time from real experiences. The approach uses periodical measurements of time and position reached by the robot while moving to the goal to modify the costs of the branches. Consequently, the search of a feasible path from a static global map in dynamic environments is more realistic than employing a distance metric. Our approach has been tested in simulation as well on an autonomous robot. Results from both simulation and real experiences are discussed.  相似文献   

17.
Trajectory planning and tracking are crucial tasks in any application using robot manipulators. These tasks become particularly challenging when obstacles are present in the manipulator workspace. In this paper a n-joint planar robot manipulator is considered and it is assumed that obstacles located in its workspace can be approximated in a conservative way with circles. The goal is to represent the obstacles in the robot configuration space. The representation allows to obtain an efficient and accurate trajectory planning and tracking. A simple but effective path planning strategy is proposed in the paper. Since path planning depends on tracking accuracy, in this paper an adequate tracking accuracy is guaranteed by means of a suitably designed Second Order Sliding Mode Controller (SOSMC). The proposed approach guarantees a collision-free motion of the manipulator in its workspace in spite of the presence of obstacles, as confirmed by experimental results.  相似文献   

18.
We have been developing MKR (Muratec Keio Robot), an autonomous omni-directional mobile transfer robot system for hospital applications. This robot has a wagon truck to transfer luggage, important specimens, and other materials. This study proposes an obstacle collision avoidance technique for the wagon truck pulling robot which uses an omni-directional wheel system as a safe movement technology. Moreover, this paper proposes a method to reach the goal along a global path computed by path planning without colliding with static and dynamic obstacles. The method is based on virtual potential fields. Several modules with different prediction times are processed in parallel to change the robot response according to its relative velocity and position with respect to the obstacles. The virtual force calculated from each potential field is used to generate the velocity command. Some experiments were carried out to verify the performance of the proposed method. From the experimental results in a hospital it was confirmed that the robot can move along its global path, and reach the goal without colliding with static and moving obstacles.  相似文献   

19.
This paper presents a Probabilistic Road Map (PRM) motion planning algorithm to be queried within Dynamic Robot Networks—a multi-robot coordination platform for robots operating with limited sensing and inter-robot communication.

First, the Dynamic Robot Networks (DRN) coordination platform is introduced that facilitates centralized robot coordination across ad hoc networks, allowing safe navigation in dynamic, unknown environments. As robots move about their environment, they dynamically form communication networks. Within these networks, robots can share local sensing information and coordinate the actions of all robots in the network.

Second, a fast single-query Probabilistic Road Map (PRM) to be called within the DRN platform is presented that has been augmented with new sampling strategies. Traditional PRM strategies have shown success in searching large configuration spaces. Considered here is their application to on-line, centralized, multiple mobile robot planning problems. New sampling strategies that exploit the kinematics of non-holonomic mobile robots have been developed and implemented. First, an appropriate method of selecting milestones in a PRM is identified to enable fast coverage of the configuration space. Second, a new method of generating PRM milestones is described that decreases the planning time over traditional methods. Finally, a new endgame region for multi-robot PRMs is presented that increases the likelihood of finding solutions given difficult goal configurations.

Combining the DRN platform with these new sampling strategies, on-line centralized multi-robot planning is enabled. This allows robots to navigate safely in environments that are both dynamic and unknown. Simulations and real robot experiments are presented that demonstrate: (1) speed improvements accomplished by the sampling strategies, (2) centralized robot coordination across Dynamic Robot Networks, (3) on-the-fly motion planning to avoid moving and previously unknown obstacles and (4) autonomous robot navigation towards individual goal locations.  相似文献   


20.
The autonomous execution of mobile manipulation tasks in unstructured, dynamic environments requires the consideration of various motion constraints. The task itself imposes constraints, of course, but so do the kinematic and dynamic limitations of the manipulator, unpredictably moving obstacles, and the global connectivity of the workspace. All of these constraints need to be updated continuously in response to sensor feedback. We present the elastic roadmap framework, a novel feedback motion planning approach capable of satisfying all of these motion constraints and their respective feedback requirements. This framework is validated in simulation and real-world experiments using a mobile manipulation platform and a stationary manipulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号