首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
根据二次型Boost变换器、耦合电感和倍压单元,提出耦合电感倍压单元高增益DC/DC变换器。通过在后级Boost电路单元中引入耦合电感,以降低开关管的电压应力;耦合电感次级连接倍压单元,通过输出端叠加以提高变换器的电压增益。由二极管和电容组成的无源无损吸收电路可减少由漏感引起的开关管两端的电压尖峰。详细分析了该变换器的工作原理及工作特性。最后,通过实验结果验证了理论分析的正确性。  相似文献   

2.
提出一种基于耦合电感与开关电容单元的高增益DC/DC变换器.将开关电容单元集成到电路拓扑中,并拓展至n个,提高该变换器调节增益的自由度,使其不仅能通过改变耦合电感匝比来调节电压增益,还能通过增减开关电容单元来改变电压增益.耦合电感中漏感的电流不能突变,使得二极管的反向恢复问题得以解决.漏感能量通过无源箝位电路得到了很好的吸收,进而降低了开关管的电压应力,提高了变换器的效率和可靠性.分析了所提电路拓扑的工作原理,并对比分析了变换器的性能特点.最后,制作了一台输入电压为20~40 V,输出电压为380 V,额定功率为300 W的样机进行实验验证.主要工作波形与理论分析基本一致,且实测最高效率为95.4%,从而验证了理论分析的正确性与所提变换器的可行性.  相似文献   

3.
提出一种含耦合电感倍压单元的高增益DC/DC变换器。变换器的电压增益可通过调节耦合电感的匝比得到进一步提升。由输入电感和辅助电容可组成输入电流纹波吸收电路,通过合理配置电容参数可实现输入电流的零纹波,从而可降低滤波电感体积。变换器引入耦合电感倍压单元后,开关管不直接箝位于输出高电压,因此可实现开关管的低电压应力。此外,由箝位二极管和储能电容形成的电压尖峰吸收电路可有效降低漏感引发的开关管电压尖峰。分析了变换器的工作机理和稳态特性,并推导了零输入电流纹波满足条件和参数优化方案。最后,通过一台功率为100 W的实验样机进行了可行性验证。  相似文献   

4.
刘文琪  丁稳房 《电源技术》2021,45(10):1330-1332
基于耦合电感、开关管与输入电压源组成的基本功率单元,提出了一种适用于光伏发电系统的新型高增益DC/DC变换器.变换器中耦合电感和二极管-电容结构组成的倍压单元提升了电路的升压比,无源箝位电路对漏感能量进行了二次利用,削弱了开关管漏、源极间的电压震荡,且箝位电容的位置进一步提升了输出电压.另外,漏感的存在缓解了二极管的反向恢复问题,优化了开关管和二极管的选择.详细解释了变换器在不同模式的工作原理,并计算出了电压增益及各元件的电压、电流应力.设计了额定功率为500 W的实验样机来评估所提变换器的可行性与优越性,样机最高效率达到了94.5%.  相似文献   

5.
石勇 《电力电子技术》2011,45(11):53-55
研究了一种新型电容箝位型混合3电平全桥变换器,该变换器初级包含有一个3电平桥臂和一个2电平桥臂。3电平桥臂中每个开关器件承受Uin/2的电压应力,而其他开关器件承受Uin的电压应力,电路可在很宽的负载范围内实现零电压开关(ZVS)。分析了该电路的基本工作原理、输入输出特性,通过分析表明该电路在输出滤波器前采用3种电平构造输出波形,可有效减小输出滤波电路中的谐波含量。通过搭建一套实验装置验证了电路的工作原理,实验结果表明该电路工作原理正确,可以正常工作。  相似文献   

6.
一种交错并联高升压DC/DC变换器   总被引:1,自引:0,他引:1  
针对燃料电池应用系统中电池输出电压低的问题,提出一种具备高增益升压能力的非隔离型DC/DC变换器,该变换器通过在传统Boost三端口网络中串入由二极管和电容构建的DCM ( di-ode-capacitor multiplier, DCM)升压单元来提高其输入输出增益。理论分析和实验结果表明,该变换器在提高输入输出增益的同时还具备以下优点:(1)开关器件电压应力低,可以选择更低导通电阻的开关管提高变换器工作效率;(2)所有二极管的电流电压应力均相等,有利于散热器设计;(3)输入输出增益可以通过DCM单元数来调节,方便根据输入输出工况做出合适的调整;(4)交错并联的输入形式,更适合于大电流输入的应用场合;(5)两相输入电流可以实现自动均流,控制方便。  相似文献   

7.
针对传统Z源DC/DC变换器存在的输入电流不连续、输出电压增益不够高和功率器件电压应力较高等不足,利用开关电感和开关电容技术,提出了一种混合开关高增益DC/DC变换器。该变换器主电路中只用到1个储能电容,结构简单,与现有典型的高增益阻抗源DC/DC变换器相比,所提出的混合开关电感和开关电容的DC/DC变换器可以实现更高的输出电压增益,同时电容和开关器件的电压应力较低。详细分析了所提变换器的工作原理,通过在实验室中所建立的输入电压16~40 V、输出电压26~107 V和输出功率7~114 W的原型验证了其性能。  相似文献   

8.
研究了一种改进型三态开关高电压增益变换器。在输入并联-输出串联交错控制变换器基础上,将耦合电感初级引入变换器输入端,有效抑制输入电流纹波,实现输入电流自动均流的效果;两个耦合电感的次级与电容、电感构成电压倍增单元串联接入输出端,进一步提升变换器电压增益。该拓扑结构中两个串联的输出电容,既能回收再利用耦合电感的漏感能量,又能箝位开关管的漏源电压,减小开关管的电压应力,有利于选取低电压等级、低导通阻抗的开关器件,有助于减小功率管的导通与关断损耗。通过合理的漏感设计有效抑制了二极管的反向恢复问题,实现开关管零电流开关(ZCS)导通降低开关损耗。详细分析了所提变换器的工作原理与稳态工作特性,实验结果验证了理论分析的正确性。  相似文献   

9.
开关电容变换器(switchedcapacitorconverter,SCC)具有效率高、体积小、重量轻等优点,适用于数据中心、电动汽车等对效率和功率密度要求较高的场合。文章归纳出一个谐振开关电容基本单元,基于此,对现有谐振开关电容变换器的拓扑结构和软开关工作原理进行分析,并概括为串并联、多级模块化、多电平及级联等4种组成类型。文章总结移相、调频、占空比分配等调压方法,指出通过移相或改变开关频率,使变换器工作在零电压开关(zerovoltage switching,ZVS),可以实现电压连续调节;占空比重新分配,改变开关状态,可以实现电压断续调节。针对无源器件参数差异造成的开关管电压振荡问题,给出耦合电感去除法和电感共用法等解决方案,可省去相应的电压箝位电路。将用于实现高增益和多电平的开关电容单元应用于谐振SCC,并对其进行改进,可提升其电压变换比,便于电路参数选择,提高稳定性。最后,对典型谐振SCC进行性能对比,并提炼现存共性问题,供读者参考。  相似文献   

10.
提出了一种可用于高动态响应场合的五电平DC/DC变换器。该电路在飞跨电容三电平电路的基础上通过添加两个双向开关和两个飞跨电容构造中间电平。稳定的飞跨电容电压是电路工作的基础,当电路工作时,飞跨电容的电压可以通过调节与之对应的中间电平的导通时间比来调节。文中分析了该电路的工作模式、电容电压平衡原理。实验结果证明,该电路工作原理正确,可以正常工作。  相似文献   

11.
为了满足电池测试设备要具有较宽的输出电压范围的要求,本文采用了一种宽电压范围输出的双向DC/DC变换器电路拓扑,并通过对基本单元的多重化并联,达到了减小电流纹波、电流谐波含量和系统体积的目的.文中详细分析了多重双向H桥DC/DC变换器的工作原理、参数设计和控制方法.本电路应用于100kW动力锂离子蓄电池测试设备中.样机...  相似文献   

12.
两级宽输入DC/DC变换器设计与建模分析   总被引:1,自引:0,他引:1  
宽输入DC/DC变换器功率器件承受电压应力变化范围大,增加了电路损耗,减小了使用寿命。两级式变换器能够减小电路中功率器件的电压应力,但控制较为复杂。此处研究了一种电流控制型双Buck级联形式的宽输入开关电源,仅对后级电路进行闭环控制,简化了控制,有效减小了电路体积。建立了电路传递函数模型,讨论了电路的稳态特性及动态特性,进行了电路的稳定性分析,并通过仿真与实验分析,证明了电路具有良好的动态性能和输出稳定性,从而验证了设计方案的可行性。  相似文献   

13.
研制的电压连续可调的高压直流电源,电源主要由两部分构成,第一部分为高频AC/D C变换单元,设计实现过流、过压保护和输出电压调节的功能;第二部分为高频D C/D C变换单元,主要由全桥串联谐振变换器组成,其工作在谐振状态,可以改善电路的高压打火问题。两部分都引入高频变换,能够减小系统体积和降低输出直流电压的纹波,最后给出了设计实例以及相应的测试结果。  相似文献   

14.
提出了一种新型的含并联辅助电路的零电流转换(ZCT)全桥DC/DC变换器拓扑结构。该变换器采用脉宽调制(PWM),通过在原边增加一个由电容和电感构成的并联有源辅助电路,在开关管状态发生变化时,控制辅助电路的谐振电流,实现了主开关管和辅助开关管的零电流开关(ZCS),也实现了输出整流二极管的软换流,使整流二极管承受的电压相对较低,即为输出电压,特别适合于开关器件为IGBT的高电压大功率场合,消除了IGBT拖尾电流引起的开关损耗,改善了电路性能。分析了变换器的工作原理及零电流开关的实现条件,给出了主电路拓扑结构和谐振网络相关参数设计。根据所选取的参数对主电路进行了仿真研究,结果验证了电路分析的正确性和可行性。  相似文献   

15.
在无线电能传输系统中,负载的接收功率对发射线圈与接收线圈之间的互感与负载阻值的变化比较敏感,当接收线圈与发射线圈之间出现偏移或负载等效阻抗变化时,需要通过有效的控制方法较快地保持负载接收功率基本稳定。文中在分析次级侧包含DC/DC电路的无线电能传输系统结构的基础上,给出了互感与负载电压、负载电流之间的关系,并推导出了DC/DC电路的占空比与负载接收功率之间的关系;然后提出通过检测负载电压、电流,调节DC/DC电路的输出功率稳定控制策略;最后,通过Matlab/Simulink仿真以及样机实验,验证了文中理论分析与控制策略的有效性和正确性。  相似文献   

16.
提出了一种高增益交错耦合电感DC-DC变换器,采用二极管、电容和电感构建无源吸收网络,回收再利用漏感能量,开关管的开关电压尖峰得到抑制,进而减小了开关管的电压应力;选用导通阻抗低的MOSFET,降低开关损耗,改善变换器效率。将2个电容和2个耦合电感副边相结合,1个导通周期内,当电容并联导通时,储存在耦合电感中的能量给电容充电;当电容串联导通时,将能量释放给输出端,从而获得高增益。此外,二极管的反向恢复问题得到有效抑制;交错并联控制抑制了输入电流纹波,变换器性能得到改善。对电路的操作原理和模态变化作了详细分析,最后搭建了1台300 W、20 V/240 V的实验样机,验证了理论分析的正确性。  相似文献   

17.
萧岚  严仰光 《电力电子技术》1998,32(4):30-33,36
详细研究了谐振直流环节单相逆变器的输入谐振电压与逆变器输出调制电压、输出正弦电压的关系;讨论了输出滤波电路对输出电压的影响;给出了输入谐振脉冲电压和滤波电路参数的设计,通过结实型谐振直流环节逆变器的实验电路结果对其设计参数进行了验证。  相似文献   

18.
陈梦星  高峰  蒋涛 《电源学报》2017,15(4):156-161
提出了一种电源-电容串联型直流变换器,这种拓扑结构可以同时为两路直流电源升压,并且有效降低了半导体器件的电压与电流应力。与双路Boost型直流变换器相比,该电源-电容串联型直流变换器在不增加功率器件数量的前提下,显著降低了半导体器件的电压与电流应力,适用于分布式光伏并网逆变器的直流变换级。主要涉及该直流变换器的运行方式、电压与电流应力分析、效率对比,并通过实验验证了该直流变换器的可行性。  相似文献   

19.
This paper proposes a new circuit topology for a high‐efficiency isolated DC/DC converter using series compensation. The proposed converter consists of a high‐efficiency resonance half‐bridge converter and a series converter. The series converter regulates the output voltage and provides only the differential voltage between the input voltage and output voltage. Therefore, the circuit achieves high efficiency when the input voltage is almost equal to the output voltage, because then only the resonance converter will operate. In this paper, the approach employed to achieve high efficiency by using the proposed series compensation method is introduced. In addition, the fundamental operation and the method of designing the proposed circuit are described. The suitability of the proposed circuit was confirmed by performing experiment and loss analysis, and the maximum efficiency achieved was 96.2%. © 2012 Wiley Periodicals, Inc. Electr Eng Jpn, 182(2): 42–52, 2013; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22330  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号