首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybean oil was hydrogenated continuously in the presence of nickel catalysts. The iodine value of the products was varied by changing the oil flow rate and temperature of the reaction. Sulfur-promoted nickel catalyst increased the selectivity for linolenate hydrogenation, but formed much higher proportions oftrans isomers. Linoleate selectivity improved with temperature with both nickel and sulfur-promoted nickel catalysts, buttrans isomerization also increased. The feasibility of this continuous reactor system was demonstrated as a practical means to prepare hydrogenated stocks of desired composition and physical characteristics at high throughput.  相似文献   

2.
Continuous hydrogenation of fats and fatty acids using suspended catalysts was studied in a vertical flow reactor packed with Raschig rings. A short time of reactive contact of the fat or the fatty acid with the catalyst and hydrogen is the unique feature of this system. A nickel catalyst used in the hydrogenation of soybean oil gave a reduction of 40-50 iodine value units per min, small amounts oftrans-isorners (10-20%), large proportions of linoleate in unreduced octadecadienoyl moieties (70-80%), and nonselective reduction of polyunsaturated acyl moieties (linoleate selectivity ratio 1-3). Another nickel catalyst, used in the hydrogenation of tallow fatty acids, also gave a reduction of 40-50 iodine value units per min and nonselective reduction of polyunsaturated fatty acids. A copper chromite catalyst used in the hydrogenation of soybean oil gave a reduction of 10-15 iodine value units per min, low levels oftrans- isomers (10-15%), and selective reduction of linolenoyl moieties (linolenate selectivity ratio 4-6). Composition of positional isomers of cis- andtrans-octadecenoyl moieties in partially hydrogenated products obtained both with nickel and copper chromite catalysts reveals that essentially the same mechanisms of isomerization are involved in continuous hydrogenation at short time of reactive contact as in batch hydrogenation. 1The terms “linoloyl” and “linolenoyl” are used throughout to designate9-cis, 12-cis-octadecadienoyl and 9-cis, 12-cis, 15-cis- octadecatrienoyl groups, respectively.  相似文献   

3.
Potassium elaidate in slightly alkaline solution was hydrogenated for up to 7 hr with 1.5% of Rufert nickel catalyst at 150 C and 20 kg/sq cm pressure. Potassium linoleate was similarly hydrogenated with 1.0% catalyst for 7 hr, and the hydrogenation continued for another 7 hr after addition of 0.5% fresh catalyst. Periodic samples from each were analyzed for component acids. The positional isomers in thecis andtrans monoenes, isolated by preparative argentation thin layer (TLC) or column chromatography, were estimated after oxidation to dicarboxylic acids. Some diene fractions were isolated for further examination. In potassium elaidate hydrogenation,cis monoenes were initially produced in considerable amounts, but to a lesser extent thereafter. Positional isomers were similarly distributed in bothcis andtrans monoenes after prolonged hydrogenation. In the hydrogenation of potassium linoleate, a drop in iodine value (IV) of 60 units occurred in the first hour, and 38% oftrans monoenes (in which the 10- and 11-monoenes constitute 32% each) were formed. The IV then fell only slowly, and up to 38% ofcis monoene (mostly 9- and 12-isomers) was formed. Addition of fresh catalyst caused a major shift ofcis monoenes totrans forms. The diene fraction was mostly nonconjugated material with the first double bond at the 9, 8 and 10-positions. Minor amounts of conjugated dienes were present as well as a dimeric product.  相似文献   

4.
Both methyl cis-9-octadecenoate and methyl trans-9-octadecenoate (commonly known as methyl oleate and methyl elaidate) were hydrogenated at operating conditions within the following ranges: 100–140°C, 1.7–14.6 at and 0.05–0.14% nickel catalyst. Correlations were developed for both geometrical and positional isomers as a function of iodine value. Decreases in pressure or increases in temperature resulted in a relatively greater increase in the amounts of positional isomers as compared to geometrical isomers. The rates of isomerization were found to vary between 0.7 to 2.5 times the rates of hydrogenation for hydrogenation runs with methyl cis-9-octadecenoate. The ratio between these two rates increased with higher temperatures or lower pressures. The rates of hydrogenation were compared for methyl cis-9-octadecenoate, methyl trans-9-octadecenoate, and cottonseed oil. Hydrogenation rate constants decreased in the following order: methyl trans-9-octadecenoate, methyl cis-9-octadecenoate, and cottonseed oil. The induction period that occurred only when a new catalyst was used depended on the temperature, pressure, and fatty feedstock being hydrogenated. The catalyst was activated to a considerable extent during the induction period.  相似文献   

5.
Summary A commercial cottonseed oil was hydrogenated under nonselective, normal, and selective conditions. The operating variables used were within the ranges of those ordinarily found in large-scale operations. For each run samples were withdrawn at iodine values of approximately 75, 62, and 48; and these samples were analyzed for the position of the donble bonds, content oftrans isomers, and content of linoleins. Double bonds were found in the 6 through 14 positions of the monounsaturated fatty acid groups resulting from the hydrogenations. On the basis of the percentage distribution of the double bonds, there appeared to be no marked tendency for the linoleoyl group to form 9- or 12-isomers of the oleoyl group. In the early stages of the selective hydrogenation the rate at which double bonds shifted from the 9-position was greater than the rate at which double bonds were hydrogenated. The conditions of hydrogenation did not have a marked effect on the distribution of the double bonds at iodine values of about 62 and 48. The conditions of hydrogenation did have a marked effect on the percentage oftrans bonds. At an iodine value of approximately 75 the content oftrans bonds, expressed as weight percentage of trielaidin, was 9.4 for the nonselective hydrogenation and 27.3 for the selective hydrogenation while at an iodine value of approximately 48 these values increased to 21.6 and 37.7, respectively. Presented at the 48th Annual Meeting. American Oil Chemists' Society, New Orleans, La., April 29–May 1, 1957. One of the laboratories of the Southern Utilization Research and Development Division, Agricultural Research Service, U. S. Department of Agriculture.  相似文献   

6.
Potassium oleate in slightly alkaline solution was hydrogenated for up to 7 hr with Rufert nickel catalyst at 150C and 20 kg/sq cm pressure. With 1% catalyst, the iodine value dropped by 12 units in the first hour, and only slightly thereafter. With 2% catalyst there was a drop of 24 units in iodine value in the first hour, a steady state for the next 3 hr, and a second sharp drop of 30 units prior to the seventh hour. Samples of fat hydrogenated over 1% catalyst for 3 hr and 7 hr respectively were analyzed by gas-liquid chromatography, thecis andtrans monoenes were separated by argentation thin-layer chromatography, and the positional isomers in each were determined by oxidation of the total fraction to dicarboxylic acids, which were then estimated by GLC. Apart from double-bond saturation during the first 3 hr of hydrogenation, extensive double-bond migration yielded 23.5% oftrans 8- to 13-monoene, accompanied by small amounts only of positionalcis monoenes other than the starting material. After 7 hr of hydrogenation, extensivecis tocis isomerization occurs, accompanied by lesscis totrans shift; thecis:trans ratio for each monoene consequently tended toward 1:1. The results are explained on the sorption mechanism of hydrogenation and suggest that soap hydrogenation, involving catalyst poisoning, may represent a magnified version of normal fat hydrogenation.  相似文献   

7.
Cationic rhodium(I) complexes of the type [NBD Rh L2]+[C1O4] (NBD = norbornadiene and L = diphenylphosphinoethane or triphenylphosphine) have been studied as catalysts for the hydrogenation of soybean oil. These catalysts give a good yield of products with cis-configuration. Indeed, hydrogenation could be performed under mild conditions (30 C, 1 atm hydrogen pressure) to an iodine value of 80 with not more than 12% oftrans monoenes and only 5% conjugated isomers formed. The results obtained are interpreted on the basis of the equilibrium H2RhL n + ⇌HRhLn+H+. By the addition of acid (HClO4 ) the bishydrido form of the catalyst could be studied. With this system only small amounts of trans monoenes were formed and no othertrans isomers could be detected. By the addition of a base such as triethylamine, the monohydridic form of the catalyst could be studied. In contrast to the bishydrido complex, this system gave large amounts oftrans monoenes, together withcis-trans andtrans-trans forms of the 18:2 acid. With both forms of the catalyst system, conjugated isomers were formed.  相似文献   

8.
The reaction of copper stearate with triethylaluminum (TEAL) formed a soluble catalyst that promoted the selective hydrogenation of the linolenyl groups in soybean oil. This homogeneous catalyst was more active than copper-chromite. The activity was enhanced by the addition of silica, alumina or titania. Ethyl alcohol accelerated the hydrogenation when it was added in small amounts and retarded hydrogenation when increased amounts were added. More active and, in some cases, more selective catalysts were formed when TEAL was replaced by trialkylaluminum compounds containing longer chain length in the alkyl groups. Among other organometallics tested, diethylmagnesium and diisobutylaluminum ethoxide formed catalysts with activity comparable to heterogeneous catalysts (KLe/KLo=2.8~5.2) was less than that obtained with copper-chromite (12~14), but greater than that of commercially used nickel catalysts (2). Isomerization, as measured by the percentage oftrans isomers formed, was similar to that of heterogeneous copper catalysts (%trans/ΔIV=0.6~0.7). Presented at the AOCS meeting in New Orleans, May 1981.  相似文献   

9.
Soybean oil was hydrogenated with a carbon‐supported ruthenium catalyst (Ru/C) at 165 °C, 2 bar H2 and 500 rpm stirring speed. Reaction rates, trans isomer formation, selectivity ratios and melting behaviors of the samples were monitored. No catalytic activity was found for the application of 10 ppm of the catalyst, and significant catalytic activity appeared at >50 ppm of active catalyst. The catalyst concentration had an effect on the reaction rate of hydrogenation, but the weight‐normalized reaction rate constant (kc) was almost independent of the catalyst concentration at lower iodine values. Ru/C generated considerable amounts of trans fatty acids (TFA), including high amounts of trans 18:2, and also stearic acid, due to its very non‐selective nature. The selectivity ratios were found to be low and varied between 1.12 and 4.32 during the reactions. On the other hand, because of the low selectivity, higher slip melting points and solid fat contents at high temperatures were obtained than those for nickel and palladium catalysts. Another different characteristic of this catalyst was the formation (max 1.67%) of conjugated linoleic acid (CLA) during hydrogenation. Besides, CLA formation in the early stages of the reactions did not change very much with the lower iodine values.  相似文献   

10.
Data have been presented which indicate a positive relationship between thetrans-isomer content of a hydrogenated oil and the congeal point, Wiley melting-point, and solids index. It has also been shown that cottonseed oil and soybean oil undergo substantially the same type of reaction under identical hydrogenating conditions. This conclusion is based on the relationship oftrans-isomer formation to total reduction in unsaturation up to the point that equilibrium is reached and saturation of thetrans-isomers occurs. This equilibrium was noted at between 60–70 iodine value. The relationship oftrans-isomer formation to the total reduction in double bonds can be expressed as the hydrogenation index. This is a reliable indication of the type of reaction taking place up to the point where appreciable hydrogenation of thetrans-isomers occur.  相似文献   

11.
The hydrogenation of the oleic acid group was investigated with the objective of determining the effect of solvents on the reaction rate and the formation of positional and geometrical isomers. Methyl oleate, either alone or dissolved in one of several solvents, hexane, ethanol,n-butyl ether, or acetic acid, was hydrogenated to an iodine value of about 50 under atmospheric pressure and at 30°C, with palladium-on-carbon and the W-5 form of Raney nickel as catalysts. Hydrogenation with palladium catalyst, with or without solvents, produced 76.6 to 79.1%trans bonds, based on the total double bonds. This is significantly greater than the 67% obtained previously. Hydrogenation products obtained with Raney nickel and solvents contained as little as 20.7%trans bonds at an iodine value of about 50. In two cases thetrans bonds were equal to about one-third the positional isomers. Positional isomers formed extensively when the Raney nickel was used in the absence of solvents and when the palladium catalyst was used. When the Raney nickel and solvents were used large proportions of double bonds were found in the original 9-position. Presented at the 51st Annual Meeting of the American Oil Chemists’ Society, Dallas, Tex., April 4–6, 1960. One of the laboratories of the Southern Utilization Research and Development Division, Agricultural Research Service, U. S. Department of Agriculture.  相似文献   

12.
There is current interest in reducing the trans fatty acids (TFA) in hydrogenated vegetable oils because consumption of foods high in TFA has been linked to increased serum cholesterol content. In the interest of understanding the TFA levels, hydrogenation was carried out in this work on soybean oil and cottonseed oil at two pressures (2 and 5 bar) and 100 °C using commercially available Ni, Pd, and Pt catalysts. The TFA levels and the fatty acid profiles were analyzed by gas chromatography. The iodine value of interest is ~70 for all-purpose shortening and 95–110 for pourable oil applications. In all cases, higher hydrogen pressures produced lower levels of TFA. In the range of 70–95 iodine values for the hydrogenated products, the Pt catalyst gave the least TFA, followed closely by Ni, and then Pd, for both oils. For all three catalysts at 2- and 5-bar pressures and 70–95 iodine values, cottonseed oil contained noticeably less TFA than soybean oil; this is probably because cottonseed oil contains a lower total amount of olefin-containing fatty acids relative to soybean oil. Approximate kinetic modeling was also done on the hydrogenation data that provided additional confirmation of data consistency.  相似文献   

13.
Supported gold catalysis in the hydrogenation of canola oil   总被引:1,自引:0,他引:1  
The catalytic activity of gold supported on silica orγ-alumina has been studied in the hydrogenation of canola oil. In the hydrogenation of butadiene and pentene using these catalysts, high stability, low yield oftrans-isomers and high monoene selectivity have been reported in the literature. Catalysts containing 1% and 5% Au w/w on porous silica andγ-alumina were active in hydrogenating canola oil in the range of 150 to 250 C and 3550 to 5620 kPa. The activity level of these catalysts was about 30 times lower than that shown by the standard AOCS Ni catalyst based on the concentration of metal (g Au/L oil). Up to 91% monoene content was obtained using these catalysts in comparison with a maximum of 73% for the AOCS standard Ni catalysts. Gold catalysts can be recovered easily by filtration and reused several times without a decrease in activity. The hydrogenated oil was nearly colorless. No gold was detectable in the oil. Contrary to claims in the patent literature, the gold catalyst produces higher concentrations oftrans-isomers than does nickel. However, using gold catalysts the complete reduction of linolenic acid in canola oil can be achieved at a lowertrans-isomer content in the products than that obtained by using the AOCS standard nickel catalyst.  相似文献   

14.
Electrochemical hydrogenation employing a mediator of formate/formic acid resulted in partial hydrogenation of vegetable and soybean oil at 20–40 °C and ambient pressure when palladium supported on alumina was employed as a catalyst. An oleic acid content of 48% with a corresponding iodine value of 81 for the vegetable oil hydrogenated at 20 °C was obtained. The total trans fatty acid content and especially the 18:1 trans fatty acid were found to increase with the reaction temperature and time. Nonetheless, relatively low total trans and 18:1 trans fatty acid (7 and 3.8%, respectively) contents were found when the vegetable oil was partially hydrogenated to achieve an iodine value of 112.  相似文献   

15.
Results are now available for hydrogenation of cottonseed oil and methyl oleate in which sufficient agitation was provided to eliminate mass transfer resistances from the catalyst surface. The ratio of thetrans-to-cis isomers of oleic acid groups approaches 2.0 even at high pressures and high degrees of agitation. The rates of hydrogenation for bothcis andtrans isomers and for positional isomers are all essentially identical. A reaction scheme has been devised that is consistent with extensive experimental data, and the method of evaluating the relative reaction rate constants for each step is outlined. Using these rates constants, selectivity can be quantitatively evaluated.  相似文献   

16.
Soybean oil was partially hydrogenated with copper-chromite catalyst at 170 C and up to 30,000 psig hydrogen pressure. Catalyst activity increased with increase in pressure up to 15,000 psig. The linolenate selectivity (SLn) of the reaction remained essentially unchanged over 50–1000 psig pressure range. A SLn of 5.5 to 5.6 was achieved at 15,000 to 30,000 psig pressure range. This value is somewhat lower than the selectivity at 50–1000 psig, but much higher than that obtained with nickel catalysts. Geometric isomerization increased as pressure increased up to 200 psig; above this pressure, the percenttrans remained the same up to 500 psig.trans Isomer content decreased when the pressure was increased to 30,000 psig. cis,trans Isomerization of linoleate was greater at 1000 psig and 15,000 psig than at 50 psig. At 15,000 psig, part of the linoleate in soybean oil was hydrogenated directly without prior conjugation, whereas at low pressures, all of the double bonds first conjugate prior to hydrogenation. This difference in mechanism might explain the lower selectivities obtained at high pressures. Conjugated diene isomers were found in the products up to 200 psig. Above this pressure conjugated diene was not measurable. No significant differences were found in the double bond distribution oftrans monoenes even though the amount oftrans monoene formed decreased as pressure was increased to 30,000 psig. 1 Presented at the AOCS meeting, San Francisco, May 1979.  相似文献   

17.
Summary 1. The effects of the following factors have been investigated in the hydrogenation of cottonseed and peanut oils: temperature, concentration of catalyst, pressure of the hydrogen, degree of agitation, and nature of the nickel catalyst. 2. The formation of stearic acid was found to be repressed and the formation of “iso-oleic” acid simultaneously favored by increasing the temperature, increasing the catalyst concentration, decreasing the pressure, and decreasing the agitation. 3. The nature of the nickel catalyst, as influenced by its method of preparation, may have a large effect on the composition of the hydrogenated product. One of the nickel catalysts investigated formed excessive amounts of iso-oleic acid without being correspondingly selective. 4. In the hydrogenation of cottonseed oil, within a comparatively wide range of conditions, the production of total solid acids with a given catalyst is relatively constant, since the conditions leading to the formation of stearic and iso-oleic acid are mutually exclusive. Extremes in either direction, however, lead to the production of excessive amounts of total solid acids. 5. Peanut oil is a more suitable raw material than cottonseed oil for the production of normal oleic acid, because of its initially greater content of this constituent and its lesser content of linoleic acid. 6. On the assumption that a quantitative separation could be made of the liquid acids from the solid acid fraction (saturated and iso-oleic) of the hydrogenated products, leaving minor amounts of unhydrogenated linoleic acid as an impurity in the separated normal oleic acid, the following maximum yields of “impure normal oleic acid” could be obtained: from cottonseed oil, 56 per cent of oleic acid of 85 per cent purity, 53 per cent of oleic acid of 90 per cent purity, and 48 per cent of oleic acid of 95 per cent purity; and from peanut oil, 70 per cent of oleic acid of 85 per cent purity, 68 per cent of oleic acid of 90 per cent purity, and 66 per cent of oleic acid of 95 per cent purity. Presented before the American Oil Chemists’ Society, Houston, Texas, April 30 to May 1, 1942.  相似文献   

18.
The activities of several commercial nickel catalysts were determined by measuring their activation energies. Among these catalysts, G95E, Resan 22, Nysosel 222 and 325, all with low activation energy, were more active than DM3 and G95H, which had higher activation energy. However, the less active catalysts increased the linoleate selectivity of soybean oil during hydrogenation. The yields of bothtrans isomers and winterized oil were higher for the more selectively hydrogenated oil catalyzed by the less active catalysts. In the sensory evaluation, the fractionated solid fat that contained moretrans isomers was lower in flavor scores than the fractionated liquid oil after hydrogenation and winterization of soybean oil.  相似文献   

19.
Catalytic behavior of palladium in the hydrogenation of edible oils   总被引:2,自引:0,他引:2  
Palladium supported on alumina was used to hydrogenate soybean and canola oil. Previous literature reports indicated that palladium forms moretrans isomers than nickel. At 750 psig, 50 ppm palladium, and at 70 C, only 9.4%trans were formed when canola oil was hydrogenated to IV 74. In general, high pressure and low temperature favored lowtrans formation with no appreciable loss in catalyst activity. The effect of pressure, temperature and catalyst concentration on reaction rate,trans formation and selectivity is presented. A survey of various catalyst supports is discussed. Apparent activation energies of 6.3 to 8.9 kcal/mol were obtained; they are in good agreement with values reported in the literature.  相似文献   

20.
Olive oil was hydrogenated to an iodine value (I.V.) of ca. 50 under widely differeing operating conditions. Three types of catalyst were employed. Each catalyst was used at the lowest possible operating temp and at 170C. The hydrogenated samples were subjected to lipase hydrolysis to remove a portion of the acyl groups in the 1,3-positions, and the fractions obtained, as well as the unhydrolyzed samples, were analyzed for fatty acid composition and content oftrans mononenes. From these data it was concluded that the position of the oleoyl group in the triglyceride molecule is not a factor in the rate of hydrogenation or isomerization. A laboratory of So. Utiliz. Res. and Dev. Div., ARS, USDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号