首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
具有铁素体加回火马氏体两相组织的高铬合金强度高、韧性好,同时抗腐蚀性能优良,在油气开采领域具有广阔的应用前景。研究N、Cu、Mo、Nb、Ni、Cr元素含量对合金组织组成、力学性能影响,结果显示,降低N和Cu元素含量将使双相钢中铁素体比例提高,导致两相界面增大,使材料低温冲击韧性降低。Mo含量下降将使材料强度降低,少量Nb元素的添加对合金强度提高作用不明显。提高合金中Ni、N、Cr、Mo元素含量将使奥氏体保持到室温下,材料组织转变为铁素体加奥氏体两相组织,材料屈服强度低于500 MPa。高温应力—应变曲线检测结果显示,双相合金在1 100~1 200℃范围内变形抗力较小,但轧制过程中易在铁素体、奥氏体两相界面处产生裂纹。  相似文献   

2.
针对铸钢材料在恶劣环境(重载、低温等)下具有高强度、良好的低温冲击韧性和焊接性的使用要求,设计了1种低碳(w(C)为0.11%),含Ni、Mo的低合金高强度铸钢,重点研究该铸钢经880℃正火+520~650℃回火后的组织与力学性能。结果表明:实验铸钢经正火+回火处理后,由铸态粗大的亚共析组织转变为细小的铁素体+回火贝氏体,铸钢的综合力学性能显著提高;铁素体+贝氏体的混合组织具有高回火稳定性,与添加的Cr、Mo、V等合金元素有关;少量合金元素V在回火过程中形成弥散的(Ti,V)(C,N)析出相,起到析出强化作用;在580℃回火时,σb=590 MPa,σ0.2=470 MPa,伸长率为26%,断面收缩率为70%,尤其是冲击功AkU(室温)与AkU(40℃)分别达到150 J和110 J,室温及低温冲击断口均存在大量的韧窝和撕裂棱,断裂机制为韧性断裂。可见,实验铸钢表现出良好的综合性能匹配,能满足材料在苛刻条件下的使用要求。  相似文献   

3.
孟刚  曹开宸  郝小强  王鑫 《钢铁》2011,46(8):89-91,99
采用不同淬火工艺和回火制度,并结合金相组织和合金元素,研究了热处理对г85钢板性能的影响。试验结果表明:淬火对г85钢板性能影响较大,在930~940℃之间淬火能保证钢板的淬透性。回火温度低于700℃时,钢板强度随温度的增加缓慢降低;回火温度高于700℃时,强度急速下降。合金元素Mn、Mo、Nb有效提高了г85钢板的淬...  相似文献   

4.
3Cr-3Mo二次硬化钢的回火组织和力学性能   总被引:6,自引:0,他引:6  
王毛球  董瀚  王琪  李建新  赵隆 《钢铁》2003,38(3):38-42,49
研究了3cr—3Mo二次硬化钢淬火回火后的组织和力学性能。结果表明:随回火温度的升高,试验钢中先后析出M3c、M2c和M7C3等碳化物,在575℃回火时硬度达到峰值;400一575℃回火后试验钢的抗拉强度约为l600MPa,冲击韧性为30J/cm^2;回火温度高于600℃时,强度和硬度迅速下降,冲击韧性增加;640℃回火时,以M2C型碳化物为主,抗拉强度为1100MPa,冲击韧性增加至55J/cm^2。  相似文献   

5.
以Fe-Mo预合金粉为基粉,通过添加合金元素Ni、Cu,经820℃部分扩散制成Fe-Mo-Ni-Cu部分扩散合金粉,应用粉末冶金技术制备了Fe-Mo-Ni-Cu-C烧结硬化钢,对该材料的组织结构和物理机械性能进行了研究。实验结果表明:烧结硬化钢材料在烧结后期于氢气保护下直接冷却,不需要单独淬火,随冷却速度不同,Fe-Mo-Ni-Cu-C烧结硬化钢的主要金相组织为回火马氏体、珠光体和下贝氏体。合金元素Mo、Ni、Cu的加入改善了材料的组织,大幅度提高了材料的强度和硬度。材料硬度:HRC 50,拉伸强度:σb936 MPa,冲击韧性:23.6 J/cm2,密度:7.23 g/cm3。  相似文献   

6.
采用低C、高Mn成分设计思路,在复合添加Nb、V、Ti而不加入Cu、Cr和Mo等贵重合金元素的条件下,通过合理的控轧控冷工艺和组织调控,成功开发出460 MPa屈服强度级别的高强度建筑结构用钢板Q460GJD.检验结果表明:钢板具有低屈强比、良好低温冲击韧性的特点,实现了强度、韧性和塑性的合理匹配,各项力学性能指标满足标准及客户使用要求.  相似文献   

7.
热处理温度对高强变形铝青铜的组织和力学性能的影响   总被引:3,自引:0,他引:3  
针对一种新型高强变形铝青铜合金,考察了淬火温度和回火温度对该合金的微观组织和力学性能的影响。研究结果表明,淬火温度越高,合金内部的β'马氏体相越多,材料的硬度越高,但淬火温度过高时,由于针片状α相的出现,使材料的强度和塑性有较大下降。试验合金适宜的淬火温度为900℃。淬火态材料经低温回火,强度可进一步提高,400℃回火时材料的强度和硬度达到峰值,此后随着回火温度的升高,材料的强度和硬度逐渐下降,延伸率逐渐提高。600℃回火态材料的抗拉强度和延伸率分别达到900 MPa和17%以上,具有优良的强韧配合。  相似文献   

8.
桥壳是汽车行驶系统的主要构件之一,实验室研制的650QK采用中碳系成分设计,且添加微量Nb、Ti、V合金元素,组织为细小均匀的铁素体、珠光体和贝氏体,晶粒度为12~13级,屈服强度在664~671 MPa,抗拉强度在762~794 MPa,延伸率为20.0%~21.5%,冷弯性能良好,低温冲击韧性良好,-60℃低温冲击韧性达到127 J,韧脆转变温度低于-60℃,疲劳极限强度为270 MPa,材料的综合机械性能良好,为工业化生产提供了材料的基础性能技术指标。  相似文献   

9.
以不同Mo含量V微合金钢为试验钢,通过等温析出热模拟、TEM试验、Thermo-calc软件计算等手段,研究了Mo元素对V微合金钢在低温贝氏体区析出行为的影响规律;通过对试验钢的实验室试轧及力学性能检测,研究了Mo对V微合金钢力学性能的影响。结果表明:Mo元素的添加可以显著提高析出物的析出潜能,对于轧后600℃×40 min保温试样,Mo含量从0增至0.6%,析出体积分数可由0.019%增加到0.025%;在V微合金钢中添加Mo元素能够显著提高试验钢的强度,添加0.6%Mo的试验钢屈服强度达667 MPa,抗拉强度达803 MPa,比不含Mo的试验钢分别提高了113 MPa和119 MPa。  相似文献   

10.
采用粉末冶金方法制备添加B_4C的全致密ASP30高速钢,样品在1 040℃到1 200℃范围内淬火,并且经过560℃三次回火,研究淬火温度对其力学性能及显微组织的影响。采用扫描电子显微镜、洛氏硬度计和材料力学性能测试机研究高速钢的组织和力学性能。结果表明:添加质量分数为0.025%B_4C的ASP30粉末冶金高速钢在1 160℃下烧结2 h后会形成月牙形液相碳化物,从而获得全致密的烧结组织。随淬火温度升高,显微组织中碳化物的数量明显减少,基体中合金元素固溶含量提高,基体晶粒长大,断口形貌呈准解理断裂但断口平整度下降。随淬火温度升高,钢的硬度提高,最高值达到69 HRC。抗弯强度、断裂韧性均下降,抗弯强度最高值达4 357MPa,断裂韧性最高值为48.6 MPa/m1/2。冲击韧性先升高后下降,在1 080℃最高为18.85 J/cm2。  相似文献   

11.
通过成分优化(/%:0.35~0.46C,0.6~1.0Cr, 1.50~2.05Ni, 0.18~0.32Mo, 0.1V)、冶炼工艺(3 t VIM+ESR)以及热处理工艺(再次热处理工艺:850℃2 h水冷+590℃5 h水冷)的合理制定,获得了满足指标要求的紧固件用高强高韧SA-540合金钢材料。结果表明,为确保SA-540合金钢高温300℃规定塑性延伸强度Rp0.2≥860 MPa,室温抗拉强度应控制在1150~1170 MPa,仅有20 MPa的强度范围。对于经850℃2 h淬火/水冷+560℃5 h回火/水冷调质处理后室温抗拉强度超标的紧固件,可再次通过重新淬火并提高回火热处理温度(850℃2 h淬火/水冷+590℃5 h回火/水冷)使合金钢拉伸性能满足指标要求。SA-540合金钢淬火后随回火的温度升高,呈现抗拉强度和屈服强度下降、伸长率和断面收缩率增加的变化趋势。添加0.1%V的SA-540合金钢,可明显提高合金钢的强度和塑性指标,但低温冲击性能降低明显。  相似文献   

12.
实验用低碳贝氏体钢(%:0.042~0.045C、1.43~1.47Mn、1.0~2.5Cu、0.29~0.30Mo、0.025~0.029Nb、0.011~0.018Ti,0.0013~0.0023B)由50 kg真空感应炉冶炼。实验结果表明,随铜含量由1.0%增加至 2.5%,8-Cu在钢中沉淀速度加快,峰值硬度增大;随Cu%的增加,轧后直接淬火(DQ)钢的屈服强度由865 MPa增 至918 MPa, DQ+500℃回火钢的屈服强度由935 MPa增至1140 MPa,但1.0%~2.5%Cu DQ+500 ℃回火钢的抗 拉强度和冲击韧性均比DQ态钢有所降低。  相似文献   

13.
回火温度对轧后直接水淬15CrMoV钢组织和力学性能的影响   总被引:1,自引:1,他引:0  
试验用钢15CrMoV(%:0.15C、0.29Si、0.57Mn、1.01 Cr、0.37Mo、0.24V)16 mm板材的终轧温度为900~950℃,轧后在880~900℃水淬,并经670~800℃回火。结果表明,试验钢在线淬火后的组织为马氏体+贝氏体,随回火温度升高,钢中碳化物析出量增加,贝氏体板条束逐渐合并和减少,最终转化为碳化物+多边形铁素体组织;在730~780℃回火,15CrMoV钢具有良好的综合力学性能,抗拉强度680~760 MPa,冲击功55~130 J。  相似文献   

14.
研究了920℃精轧,830℃终轧以12℃/s冷至590℃,空冷的TMCP控制轧制工艺和TMCP+940℃淬火-630℃回火两工艺的桥梁钢Q690q(/%:0.05C、0.30Si、1.40Mn、1.10Cu、0.50Cr、0.80Ni、0.07V、0.55Mo,焊接冷裂纹敏感指数Pcm≤0.267)15mm板组织和力学性能。结果表明,TMCP工艺生产的桥梁钢Q690q组织主要由粒状贝氏体和少量铁素体组成,TMCP+调质处理后的组织为多边形铁素体和少量渗碳体,其屈服强度Rp0.2为845~870MPa,抗拉强度Rm895~900MPa,-20℃冲击功153~186J, -40℃为141~155 J。调质处理减小了钢材的M/A岛尺寸和位错密度,使Q690q钢保持高强度的同时也具有较好的冲击韧性。  相似文献   

15.
针对1种800MPa级高强钢的调质过程,分析了不同淬火温度和回火温度对实验钢力学性能和组织的影响。结果表明:淬火温度在880~920℃之间时,随着淬火温度升高,实验钢的强度逐渐降低,-40℃冲击韧性是先升高后降低,并在900℃达到最大;回火温度在550~700℃之间,随着回火温度的升高,实验钢的强度逐渐下降,-40℃冲...  相似文献   

16.
高兵  赵亚娟 《特殊钢》2012,33(3):57-60
通过Gleeble-3800热模拟试验机,研究了终轧温度(800~950℃)和冷却速度(2~20℃/s)对Q550D微合金钢板(/%:0.06C、0.20Si、1.60Mn、0.010P、0 001S、0.10Mo、0.06Nb、0.01V、0.02Ti)的组织和力学性能的影响。结果表明,随着终轧温度的降低和轧后冷却速度的增加,粒状贝氏体逐渐减少,板条贝氏体逐渐增多,钢的屈服和抗拉强度提高的趋势比较明显,-20℃韧性得到改善,但伸长率呈下降趋势;在终轧温度为850℃、冷却速度为15~20℃/s时,Q550D钢具有较好的综合强韧性,即抗拉强度约为750 MPa,屈服强度650 MPa,伸长率39%,-20℃冲击功65 J。  相似文献   

17.
陈俊  陈晨  罗恒勇 《特殊钢》2019,40(3):49-52
试验钢采用50 kg中频感应炉熔炼,并轧成13mm钢板。试验了R1-0.15MoNb,R2-0.15MoV,R3-0.35MoNbV,R4-0.35MoNbVB和R5-0.35MoNbVTiB耐火钢的轧制温度(1 010~1 050℃)对该钢性能的影响。结果表明,R3钢(/%:0.04C,1.12Mn,0.32Si,0.018P,0.023S,0.35Cr,0.35Mo,0.025Nb,0.15N)在1030℃轧制后具有最佳的综合性能,即抗拉强度598 MPa、屈服强度514 MPa、延伸率28%、屈强比0.86、600℃回火前后HV硬度值分别为215和204、0℃冲击功124J;600℃的屈服强度355 MPa,屈强比为0.69,满足耐火钢国家标准要求。  相似文献   

18.
方剑  黄彦  唐应波 《特殊钢》2018,39(3):54-58
试验用Φ360 mm 27CrMnMoV钢(/%:0.27C,0.25Si,0.92Mn,1.06Cr,0.75Mo,0.009P,0.003S,0.088V)铸坯经穿孔和Φ340连轧机组热轧成Φ244.48 mm×15.11 mm无缝管。试验研究了830~950℃水淬,880℃水淬+600~680℃ 30~120 min回火,以及880℃两次水淬+620~660℃回火工艺对该钢管组织和性能的影响。一般要求V150管屈服和抗拉强度分别为1034~1241 MPa和≥1103 MPa,0℃横向冲击功≥80 J。结果表明,一次淬火+630~655℃ 60min回火时Mo和V碳化物析出产生二次硬化,其屈服和抗拉强度分别为1 034~1 150 MPa和1 103~1 225 MPa,0℃横向冲击功为80~108 J。二次淬火+635~655℃ 60 min回火工艺,循环淬火使奥氏体晶粒细化,提高强度的同时显著改善韧性,其屈服和抗拉强度分别为1 034~1 170 MPa和1 103~1 240MPa,0℃横向冲击功为80~120 J,比一次淬火+回火工艺更容易实现V150高抗挤毁套管性能的稳定性控制。  相似文献   

19.
吴迪  厉勇  王春旭  傅万堂  唐景林 《钢铁》2016,51(8):60-63
 采用SEM、TEM、HRTEM、物理化学相分析法研究了回火温度对Fe-Co-Ni-Cr-Mo-W系2 200 MPa级二次硬化型超高强度钢的析出相及力学性能的影响。结果表明,试验钢在回火过程中具有明显二次硬化现象;抗拉强度、屈服强度在490、530 ℃达到峰值,峰值强度分别为2 243、1 859 MPa;试验钢在510 ℃具有较好的综合力学性能,抗拉强度为2 185 MPa,屈服强度为1 859 MPa,冲击功为35 J;在400~440 ℃回火时,马氏体板条内和板条界处析出大量粗大的层片状渗碳体;回火温度高于470 ℃时,板条内析出大量均匀弥散分布的细小M2C碳化物及少量的laves相Fe2W,这是产生二次硬化现象的原因;随着回火温度的升高,M2C型碳化物中的钼、钨元素质量分数增加,铁、铬质量分数降低。  相似文献   

20.
The microstructure and properties of a combined precipitation hardening ultrahigh strength steel with nano-sized carbides and intermetallics were studied systematically.The results show that after tempering at 300℃lots ofε-carbides are precipitated in the martensite,the strength rises and the toughness falls slightly.After tempering at 430℃,much coarser cementite lamina are precipitated in martensitic laths,which causes the impact toughness falls to the minimum value.With temperature further increasing the cementites are dissolved and M2C carbides,β-NiAl intermetallics and reverse austenite begin to precipitate.The tensile strength and yield strength achieve the peak value at 470℃,490℃respectively.The tested steel achieve a tensile strength of 2 120 MPa,a yield strength of 1 950 MPa and impact energy of 54 J/cm2 after optimum tempering at 510℃.When tempering temperature is above 530℃the M2C carbides and reverse austenite is coarsening.After tempering at 560℃the reverse austenite reaches the maximum volume fraction in present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号