首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent unsymmetric 4‐node, 8‐DOF plane element US‐ATFQ4, which exhibits excellent precision and distortion‐resistance for linear elastic problems, is extended to geometric nonlinear analysis. Since the original linear element US‐ATFQ4 contains the analytical solutions for plane pure bending, how to modify such formulae into incremental forms for nonlinear applications and design an appropriate updated algorithm become the key of the whole job. First, the analytical trial functions should be updated at each iterative step in the framework of updated Lagrangian formulation that takes the configuration at the beginning of an incremental step as the reference configuration during that step. Second, an appropriate stress update algorithm in which the Cauchy stresses are updated by the Hughes‐Winget method is adopted to estimate current stress fields. Numerical examples show that the new nonlinear element US‐ATFQ4 also possesses amazing performance for geometric nonlinear analysis, no matter whether regular or distorted meshes are used. It again demonstrates the advantages of the unsymmetric finite element method with analytical trial functions.  相似文献   

2.
3.
为提高空间Timoshenko梁单元非线性问题的计算精度,在共旋坐标法的基础上,提出了一种改进的Timoshenko梁单元几何非线性分析方法。利用虚功原理得到改进空间梁单元的刚度矩阵;使用有限质点法中的逆向运动思路计算单元局部坐标系下的刚体旋转矩阵;根据整体坐标系与局部坐标系之间旋转角度的转化以及微分关系,求得空间梁单元的切线刚度矩阵;编制了相应的有限元程序,对多个经典的大变形结构进行几何非线性分析。计算结果印证了该文所提出改进方法的正确性,同时与传统共旋坐标法相比,具有更高的精度。  相似文献   

4.
A nonlinear exact geometry hybrid-mixed four-node solid-shell element using the sampling surfaces (SaS) formulation is developed for the analysis of the second Piola-Kirchhoff stress that extends the authors' finite element (Int J Numer Methods Eng. 2019;117:498-522) to laminated composite shells. The SaS formulation is based on choosing inside the layers the arbitrary number of SaS parallel to the middle surface and located at Chebyshev polynomial nodes in order to introduce the displacements of these surfaces as basic shell unknowns. The external surfaces and interfaces are also included into a set of SaS. The proposed hybrid-mixed solid-shell element is based on the Hu-Washizu variational principle and is completely free of shear and membrane locking. The tangent stiffness matrix is evaluated by efficient three-dimensional (3D) analytical integration. As a result, the developed exact geometry solid-shell element exhibits a superior performance in the case of coarse meshes and allows the use of load increments, which are much larger than possible with existing displacement-based solid-shell elements. It could be useful for the 3D stress analysis of thick and thin doubly curved laminated composite shells because the SaS formulation gives the possibility to obtain the 3D solutions with a prescribed accuracy.  相似文献   

5.
6.
A recent unsymmetric 4-node, 8-DOF plane finite element US-ATFQ4 is generalized to hyperelastic finite deformation analysis. Since the trial functions of US-ATFQ4 contain the homogenous closed analytical solutions of governing equations for linear elasticity, the key of the proposed strategy is how to deal with these linear analytical trial functions (ATFs) during the hyperelastic finite deformation analysis. Assuming that the ATFs can properly work in each increment, an algorithm for updating the deformation gradient interpolated by ATFs is designed. Furthermore, the update of the corresponding ATFs referred to current configuration is discussed with regard to the hyperelastic material model, and a specified model, neo-Hookean model, is employed to verify the present formulation of US-ATFQ4 for hyperelastic finite deformation analysis. Various examples show that the present formulation not only remain the high accuracy and mesh distortion tolerance in the geometrically nonlinear problems, but also possess excellent performance in the compressible or quasi-incompressible hyperelastic finite deformation problems where the strain is large.  相似文献   

7.
In this work, the finite rotation exact geometry four-node solid-shell element using the sampling surfaces (SaS) method is developed for the analysis of the second Piola-Kirchhoff stresses in laminated piezoelectric shells. The SaS method is based on choosing inside the layers the arbitrary number of SaS parallel to the middle surface and located at Chebyshev polynomial nodes in order to introduce the displacements and electric potentials of these surfaces as fundamental shell unknowns. The outer surfaces and interfaces are also included into a set of SaS. To circumvent shear and membrane locking, the hybrid-mixed solid-shell element on the basis of the Hu-Washizu variational principle is proposed. The tangent stiffness matrix is evaluated by 3D analytical integration throughout the finite element. This novelty provides a superior performance in the case of coarse meshes. A comparison with the SOLID226 element showed that the developed exact geometry SaS solid-shell element allows the use of load increments, which are much larger than possible with existing displacement-based finite elements. Thus, it can be recommended for the 3D stress analysis of doubly-curved laminated piezoelectric shells because the SaS formulation gives the opportunity to obtain the 3D solutions of electroelasticity with a prescribed accuracy.  相似文献   

8.
A new three‐node triangular shell element is developed by combining the optimal membrane element and discrete Kirchhoff triangle (DKT) plate bending element, and is modified for laminated composite plates and shells so as to include the membrane‐bending coupling effect. Using appropriate shape functions for the bending and membrane modes of the element, the ‘inconsistent’ stress stiffness matrix is formulated and the tangent stiffness matrix is determined. Non‐linear analysis of thin‐walled structures with geometric non‐linearity is conducted using the corotational method. The new element is thoroughly tested by solving few popular benchmark problems. The results of the analysis are compared with those obtained using existing membrane elements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
空间钢框架结构的改进双重非线性分析   总被引:13,自引:0,他引:13  
郑廷银  赵惠麟 《工程力学》2003,20(6):202-208,148
为了探讨三维结构的高等分析方法,给出基于UL法的严格三维单元虚功增量方程,详细推导了考虑剪切变形影响的三维梁柱单元的几何非线性切线刚度矩阵和基于三维单元简化塑性区模型的双重非线性刚度方程,并编制空间钢框架结构的双重非线性分析程序。使用包括几何与材料双重非线性的数值算例来验证方法和计算机程序的可行性、精确度与有效性。利用该程序,只需一个单元/构件即可准确预测空间钢框架结构的极限承载力与失稳模态,提高了结构的非线性分析效率。  相似文献   

10.
The unsymmetric FEM is one of the effective techniques for developing finite element models immune to various mesh distortions. However, because of the inherent limitation of the metric shape functions, the resulting element models exhibit rotational frame dependence and interpolation failure under certain conditions. In this paper, by introducing the analytical trial function method used in the hybrid stress‐function element method, an effort was made to naturally eliminate these defects and improve accuracy. The key point of the new strategy is that the monomial terms (the trial functions) in the assumed metric displacement fields are replaced by the fundamental analytical solutions of plane problems. Furthermore, some rational conditions are imposed on the trial functions so that the assumed displacement fields possess fourth‐order completeness in Cartesian coordinates. The resulting element model, denoted by US‐ATFQ8, can still work well when interpolation failure modes for original unsymmetric element occur, and provide the invariance for the coordinate rotation. Numerical results show that the exact solutions for constant strain/stress, pure bending and linear bending problems can be obtained by the new element US‐ATFQ8 using arbitrary severely distorted meshes, and produce more accurate results for other more complicated problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A new resultant force formulation of 8-node solid element is presented for the linear and nonlinear analysis of thin-walled structures. The global, local and natural coordinate systems were used to accurately model the shell geometry. The assumed natural strain methods with plane stress concept were implemented to remove the various locking problems appearing in thin plates and shells. The correct warping behavior in the very thin twisted beam test was obtained by using an improved Jacobian transformation matrix. The 2 × 2 Gauss integration scheme was used for the calculation of the element stiffness matrix. From the computational viewpoint, the present solid element is very efficient for a large scale of nonlinear modeling. A lot of numerical tests were carried out for the validation of the present 8-node solid-shell element and the results are in good agreement with references.An erratum to this article can be found at  相似文献   

12.
A novel mixed four‐node tetrahedral finite element, equipped with nodal rotational degrees of freedom, is presented. Its formulation is based on a Hu–Washizu‐type functional, suitable to the treatment of material nonlinearities. Rotation and skew‐symmetric stress fields are assumed as independent variables, the latter entering the functional to impose rotational compatibility and suppress spurious modes. Exploiting the choice of equal interpolation for strain and symmetric stress fields, a robust element state determination procedure, requiring no element‐level iteration, is proposed. The mixed element stability is assessed by means of an original and effective numerical test. The extension of the present formulation to geometric nonlinear problems is achieved through a polar decomposition‐based corotational framework. After validation in both material and geometric nonlinear context, the element performances are investigated in demanding simulations involving complex shape memory alloy structures. Supported by the comparison with available linear and quadratic tetrahedrons and hexahedrons, the numerical results prove accuracy, robustness, and effectiveness of the proposed formulation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The present work focuses on the development of the exact geometry (EG) 12-node piezoelectric solid-shell element with three translational degrees of freedom per node. The term “EG” reflects the fact that coefficients of the first and second fundamental forms of the reference surface are taken exactly at each element node. The finite element formulation developed is based on the higher-order 9-parameter equivalent single-layer shell theory accounting for thickness stretching, which permits the use of 3D constitutive equations. In this theory, we introduce three sampling surfaces, namely, bottom, middle, and top, and choose nine displacements of these surfaces as basic shell unknowns. Such a way allows one to represent the EG piezoelectric solid-shell element formulation in a very compact form and to derive the strain-displacement equations, which describe exactly all rigid-body shell motions in any convected curvilinear coordinate system. The element matrices are evaluated through the use of 3D analytical integration by employing the extended ANS method. To avoid shear and membrane locking and have no spurious zero energy modes, the assumed displacement-independent strains and stress resultants fields are invoked.  相似文献   

14.
A refined non‐conforming triangular plate/shell element for geometric non‐linear analysis of plates/shells using the total Lagrangian/updated Lagrangian approach is constructed in this paper based on the refined non‐conforming element method for geometric non‐linear analysis. The Allman's triangular plane element with vertex degrees of freedom and the refined triangular plate‐bending element RT9 are used to construct the present element. Numerical examples demonstrate that the accuracy of the new element is quite high in the geometric non‐linear analysis of plates/shells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents the finite rotation exact geometry four-node solid-shell element using the sampling surfaces (SaS) method. The SaS formulation is based on choosing inside the shell N SaS parallel to the middle surface to introduce the displacements of these surfaces as basic shell unknowns. Such choice of unknowns with the consequent use of Lagrange polynomials of degree N–1 in the through-thickness distributions of displacements, strains and stresses leads to a robust higher-order shell formulation. The SaS are located at only Chebyshev polynomial nodes that make possible to minimize uniformly the error due to Lagrange interpolation. The proposed hybrid-mixed four-node solid-shell element is based on the Hu-Washizu variational principle and is completely free of shear and membrane locking. The tangent stiffness matrix is evaluated through efficient 3D analytical integration and its explicit form is given. As a result, the proposed exact geometry solid-shell element exhibits a superior performance in the case of coarse meshes and allows the use of load increments, which are much larger than possible with existing displacement-based solid-shell elements.  相似文献   

16.
A family of simple, displacement-based and shear-flexible triangular and quadrilateral flat plate/shell elements for linear and geometrically nonlinear analysis of thin to moderately thick laminate composite plates are introduced and summarized in this paper.

The developed elements are based on the first-order shear deformation theory (FSDT) and von-Karman’s large deflection theory, and total Lagrangian approach is employed to formulate the element for geometrically nonlinear analysis. The deflection and rotation functions of the element boundary are obtained from Timoshenko’s laminated composite beam functions, thus convergence can be ensured theoretically for very thin laminates and shear-locking problem is avoided naturally.

The flat triangular plate/shell element is of 3-node, 18-degree-of-freedom, and the plane displacement interpolation functions of the Allman’s triangular membrane element with drilling degrees of freedom are taken as the in-plane displacements of the element. The flat quadrilateral plate/shell element is of 4-node, 24-degree-of-freedom, and the linear displacement interpolation functions of a quadrilateral plane element with drilling degrees of freedom are taken as the in-plane displacements.

The developed elements are simple in formulation, free from shear-locking, and include conventional engineering degrees of freedom. Numerical examples demonstrate that the elements are convergent, not sensitive to mesh distortion, accurate and efficient for linear and geometric nonlinear analysis of thin to moderately thick laminates.  相似文献   


17.
This paper presents a robust non-linear piezoelectric exact geometry (EG) four-node solid-shell element based on the higher-order 9-parameter equivalent single-layer (ESL) theory, which permits one to utilize 3D constitutive equations. The term EG reflects the fact that coefficients of the first and second fundamental forms of the reference surface are taken exactly at each element node. The finite element formulation developed is based on a new concept of interpolation surfaces (I-surfaces) inside the shell body. We introduce three I-surfaces and choose nine displacements of these surfaces as fundamental shell unknowns. Such choice allows us to represent the finite rotation piezoelectric higher-order EG solid-shell element formulation in a very compact form and to utilize in curvilinear reference surface coordinates the strain-displacement relationships, which are objective, that is, invariant under arbitrarily large rigid-body shell motions. To avoid shear and membrane locking and have no spurious zero energy modes, the assumed displacement-independent strain and stress resultant fields are introduced. In this connection, the Hu-Washizu variational equation is invoked. To implement the analytical integration throughout the element, the modified ANS method is applied. As a result, the present finite rotation piezoelectric EG solid-shell element formulation permits the use of coarse meshes and very large load increments.  相似文献   

18.
This paper presents a versatile multilayer locking free hybrid stress solid-shell element that can be readily employed for a wide range of geometrically linear elastic structural analyses, i.e. from shell-like isotropic structures to multilayer anisotropic composites. This solid-shell element has eight nodes with only displacement degrees of freedom and a few internal parameters that provide the locking free behavior and accurate interlaminar stress resolution through the element thickness. These elements can be stacked on top of each other to model multilayer structures, fulfilling the interlaminar stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of composite laminates. The element formulation is based on the modified form of the well-known Fraeijs de Veubeke–Hu–Washizu (FHW) multifield variational principle with enhanced assumed strains (EAS formulation) and assumed natural strains (ANS formulation) to alleviate the different types of locking phenomena in solid-shell elements. The distinct feature of the present formulation is its ability to accurately calculate the interlaminar stress field in multilayer structures, which is achieved by incorporating an assumed stress field in a standard EAS formulation based on the FHW principle. To assess the present formulation’s accuracy, a variety of popular numerical benchmark examples related to element patch tests, convergence, mesh distortion, shell and laminated composite analyses are investigated and the results are compared with those available in the literature. This assessment reveals that the proposed solid-shell formulation provides very accurate results for a wide range of structural analyses.  相似文献   

19.
两节点曲线索单元精细分析的非线性有限元法   总被引:28,自引:3,他引:25  
从UL列式的虚功增量方程出发,引入索的基本假定,推导出了两节点曲线索单元切线刚度矩阵的显式;同时根据索的特性还导出了精确计算索单元索端力的表达式,从而建立起了一套完整的对拉索进行精细分析的非线性有限元法。应用本文方法,可进行大跨度悬索桥、斜拉桥以及张拉结构等的非线性有限元分析计算。算例结果表明,本文方法是精确有效的。  相似文献   

20.
王振  孙秦 《工程力学》2014,31(5):27-33
基于共旋列式方法发展了一种用于复合材料层合板结构几何非线性分析的简单高效的三结点三角形平板壳元。该壳元由具有面内转动自由度的广义协调膜元GT9与假设剪切应变场和假设单元转角场的广义协调厚薄通用板元TMT组合而成。为避免薄膜闭锁而采用单点积分计算与薄膜应变有关的项, 同时增加一个稳定化矩阵以消除单点积分导致的零能模式。基于层合板一阶剪切变形理论, 给出了考虑层合板具体铺层顺序的修正的横向剪切刚度, 使该壳元可用于中厚层合板结构的分析。由于共旋列式大转动小应变的假设, 共旋列式内核的几何线性的单元刚阵可仅计算一次而保存下来用于整个几何非线性求解的过程以提高计算效率。数值算例表明提出的壳元进行包括复合材料层合板结构的厚薄壳结构的几何非线性分析的精度高且效率高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号