首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
NHA1 encodes a K(+) (Na(+))/H(+) antiporter in the plasma membrane of Saccharomyces cerevisiae. We report that cells expressing the NHA1 gene contained less K(+) than the mutant lacking the gene when grown without K(+) limitation. They also grew better at low K(+) and showed higher affinity of transport than the nha1 strain. In agreement with the function of an electroneutral cation/H(+) antiporter, the effect was only observed at acidic pH. The improved growth and transport depended on the presence of Trk1p (the main K(+) influx system) and did not require the product of TRK2. We propose that Nha1p regulates the potassium content of the cell and, as a consequence, can affect the activity of the main K(+) influx system (Trk1p).  相似文献   

2.
    
Pichia sorbitophila grows rapidly in the presence of very high NaCl concentrations. Under these conditions, even when the K(+) concentration is low, P. sorbitophila cells can maintain low Na(+) and high K(+) contents. This remarkable capacity of P. sorbitophila fails when the external pH is not acidic. This indicates that Na(+) efflux is mediated by an electroneutral Na(+)/H(+) antiporter. We have cloned and sequenced two genes designated as PsNHA1 and PsNHA2, which probably encode two antiporters of this type. The genes present high similarity with the corresponding genes from other yeasts. The heterologous expression of PsNHA1 or PsNHA2 in a Saccharomyces cerevisiae mutant lacking the Na(+) efflux systems and sensitive to high concentrations of Na(+) and K(+) rescued the tolerance and the ability to extrude both cations. The Accession Nos of the sequenced DNA fragments are: PsNHA1, AJ496431; PsNHA2, AJ496432. (TC 2.A.36) Copyright 2002 John Wiley & Sons, Ltd.  相似文献   

3.
    
In the model yeast Saccharomyces cerevisiae, Trk1 is the main K+ importer. It is involved in many important physiological processes, such as the maintenance of ion homeostasis, cell volume, intracellular pH, and plasma-membrane potential. The ScTrk1 protein can be of great interest to industry, as it was shown that changes in its activity influence ethanol production and tolerance in S. cerevisiae and also cell performance in the presence of organic acids or high ammonium under low K+ conditions. Nonconventional yeast species are attracting attention due to their unique properties and as a potential source of genes that encode proteins with unusual characteristics. In this work, we aimed to study and compare Trk proteins from Debaryomyces hansenii, Hortaea werneckii, Kluyveromyces marxianus, and Yarrowia lipolytica, four biotechnologically relevant yeasts that tolerate various extreme environments. Heterologous expression in S. cerevisiae cells lacking the endogenous Trk importers revealed differences in the studied Trk proteins' abilities to support the growth of cells under various cultivation conditions such as low K+ or the presence of toxic cations, to reduce plasma-membrane potential or to take up Rb+. Examination of the potential of Trks to support the stress resistance of S. cerevisiae wild-type strains showed that Y. lipolytica Trk1 is a promising tool for improving cell tolerance to both low K+ and high salt and that the overproduction of S. cerevisiae's own Trk1 was the most efficient at improving the growth of cells in the presence of highly toxic Li+ ions.  相似文献   

4.
    
Candida krusei is a pathogenic yeast species that is phylogenetically outside both of the well-studied yeast groups, whole genome duplication and CUG. Like all other yeast species, it needs to accumulate high amounts of potassium cations, which are needed for proliferation and many other cell functions. A search in the sequenced genomes of nine C. krusei strains revealed the existence of two highly conserved genes encoding putative potassium uptake systems. Both of them belong to the TRK family, whose members have been found in all the sequenced genomes of species from the Saccharomycetales subclade. Analysis and comparison of the two C. krusei Trk sequences revealed all the typical features of yeast Trk proteins but also an unusual extension of the CkTrk2 hydrophilic N-terminus. The expression of both putative CkTRK genes in Saccharomyces cerevisiae lacking its own potassium importers showed that only CkTrk1 is able to complement the absence of S. cerevisiae's own transporters and provide cells with a sufficient amount of potassium. Interestingly, a portion of the CkTrk1 molecules were localized to the vacuolar membrane. The presence of CkTrk2 had no evident phenotype, due to the fact that this protein was not correctly targeted to the S. cerevisiae plasma membrane. Thus, CkTrk2 is the first studied yeast Trk protein to date that was not properly recognized and targeted to the plasma membrane upon heterologous expression in S. cerevisiae.  相似文献   

5.
6.
7.
  总被引:1,自引:0,他引:1  
AtChx17p is a putative K(+)/H(+) exchanger from Arabidopsis thaliana, expressed in the roots and probably involved in K(+) acquisition and homeostasis. AtCHX17 cDNA complements the phenotypes of the kha1Delta mutation in S. cerevisiae cells: a growth defect at increased pH and hygromycin sensitivity. The localization of GFP-tagged AtChx17 protein in yeast cells is similar to that of ScKha1p: a bold dotted pattern inside the cells resembling the Golgi fluorescence markers. These results show that (a) the proteins AtChx17 and ScKha1 could have similar functions and (b) S. cerevisiae kha1 deletion mutants could serve for the heterologous expression and characterization of plant transporters. The results of this work are evidence that a S. cerevisiae strain with deletions of genes encoding alkali-metal-cation/H(+) antiporters (i.e. Nha1p, Nhx1p, Kha1p) could be an ideal tool for expression and functional analysis of any type of similar plant antiporters (plasma membrane, endosomal/prevacuolar and Golgi).  相似文献   

8.
    
For the adaptation of cells of Saccharomyces cerevisiae, a period of latency is necessary before exponential growth is resumed in a medium supplemented with a highly inhibitory concentration of copper. In this work, we have examined some physiological responses occurring during this period of adaptation. The results revealed that plasma membrane H(+)-ATPase (PM-ATPase) activity is strongly stimulated (up to 24-fold) during copper-induced latency in growth medium with glucose, reaching maximal levels when the cells were about to start inhibited exponential growth. This in vivo activation of the ATPase activity by copper was accompanied by the stimulation of the H(+)-pumping activity of the enzyme in vivo and was essentially due to the increase of the apparent V(max) for MgATP. Although the exact molecular basis of the reported plasma membrane ATPase activation was not clarified, no increase in the mRNA levels from the encoding genes PMA1 and PMA2 was apparently detected during copper-induced latency. The physiological response reported here may allow the cells to cope with copper-induced lipid peroxidation and consequent decrease in plasma membrane lipid ordering and increase in the non-specific permeability to protons. The consequences of these copper deleterious effects were revealed by the decrease of the intracellular pH (pH(i)) of the yeast population, from approximately pH(i) 6 to pH(i) 5, during copper-induced latency in growth medium at pH 4.3. The time-dependent patterns of plasma membrane ATPase activation and of the decrease of pH(i) during the period of adaptation to growth with copper correlate, suggesting that the regulation of this membrane enzyme activity may be triggered by intracellular acidification. Consistent with this idea, when exponential growth under copper stress was resumed and the pH(i) of the yeast population recovered up to physiological values, plasma membrane ATPase activity simultaneously decreased from the highly stimulated level attained during the adaptation period of latency.  相似文献   

9.
Overexpression of the HAL1 gene improves the tolerance of Saccharomyces cerevisiae to NaCl by increasing intracellular K+ and decreasing intracellular Na+. The effect of HAL1 on intracellular Na+ was mediated by the PMR2/ENA1 gene, corresponding to a major Na+ efflux system. The expression level of ENA1 was dependent on the gene dosage of HAL1 and overexpression of HAL1 suppressed the salt sensitivity of null mutants in calcineurin and Hal3p, other known regulators of ENA1 expression. The effect of HAL1 on intracellular K+ was independent of the TRK1 and TOK1 genes, corresponding to a major K+ uptake system and to a K+ efflux system activated by depolarization, respectively. Overexpression of HAL1 reduces K+ loss from the cells upon salt stress, a phenomenon mediated by an unidentified K+ efflux system. Overexpression of HAL1 did not increase NaCl tolerance in galactose medium. NaCl poses two types of stress, osmotic and ionic, counteracted by glycerol synthesis and sodium extrusion, respectively. As compared to glucose, with galactose as carbon source glycerol synthesis is reduced and the expression of ENA1 is increased. As a consequence, osmotic adjustment through glycerolsynthesis, a process not affected by HAL1, is the limiting factor for growth on galactose under NaCl stress. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
    
Potassium uptake in Saccharomyces cerevisiae is mediated by at least two proteins, known as Trk1p and Trk2p. Direct involvement in cation movements has been demonstrated for Trk1p, which is the high affinity transporter. S. cerevisiae cells also show low affinity potassium uptake, perhaps mediated by Trk2p. Mutants lacking Trk1p, lose high affinity system, but when grown with moderate potassium concentrations, Trk2p seems to replace it. Mutants lacking both proteins are viable but require at least 10 mM K(+) in the medium to sustain growth. Here we report the cloning and characterization of a gene from Kluyveromyces lactis encoding a homologue of these two proteins. KlTrkp is a 1070 amino acid peptide that shows, overall, higher homology with Trk2p than with Trk1p, and its disruption gives rise to cells with deficient potassium transport and with an increased K(+) requirement for normal growth. Determination of kinetic parameters in the K. lactis wild-type and Kltrk1Delta strains, as well as in Sctrk1Delta Sctrk2Delta S. cerevisiae cells expressing KlTrk1, indicated that this is a low affinity component of a major potassium uptake system in K. lactis.  相似文献   

11.
A low-affinity glucose transporter gene of Saccharomyces cerevisiae was cloned by complementation of the rag1 mutation in a strain of Kluyveromyces lactis defective in low-affinity glucose transport. Gene sequence and effects of null mutation in S. cerevisiae were described. Data indicated that there are multiple genes for low-affinity glucose transport.  相似文献   

12.
13.
Cinnamic acid and cinnamic acid derivatives occur in plants and fruits, providing a natural protection against infections by pathogenic microorganisms. They may also inhibit wine fermentation and other fruit juice fermentations by Saccharomyces cerevisiae and raise difficulties in the biological treatment of waste water from some food industries. In the present work, it is shown that cells of S. cerevisiae YPH499 grown at pH 4 and 30°C, in the presence of concentrations of cinnamic acid (20 or 35 mg/l) that reduce the maximum specific growth rate by 46 or 53%, respectively, exhibit a more active plasma membrane H+–ATPase than cells grown in its absence. This stimulatory effect was detected by assaying, during yeast growth in absence or presence of cinnamic acid, both the plasma membrane ATPase activity in crude membrane extracts and its action as a proton-pump by comparing extracellular acidification as a function of culture cell density. The lag-phase of approximately 8 h observed during cultivation in the presence of 20 mg/l cinnamic acid of yeast cells previously grown in its absence was eliminated by growing the inoculum in medium supplemented with the same concentration of cinnamic acid. These cinnamic acid adapted cells exhibited a more active plasma membrane H+–ATPase and this phenomenon may be due to and/or be among the mechanisms underlying the adaptative response to this toxic acid in yeast.  相似文献   

14.
    
Trk, encoded by the partially redundant genes TRK1 and TRK2, is the major potassium transporter of Saccharomyces cerevisiae. This system is specific for potassium and rubidium but, by reducing the electrical membrane potential of the plasma membrane, Trk decreases the uptake of toxic cations such as lithium, calcium, aminoglycosides and polyamines, which are transported by other systems. Gain- and loss-of-function studies indicate that TPS1, a gene encoding trehalose-6-phosphate synthase and known to modulate glucose metabolism, activates Trk and reduces the sensitivity of yeast cells to many toxic cations. This effect is independent of known regulators of Trk, such as the Hal4 and Hal5 protein kinases and the protein phosphatase calcineurin. Mutants defective in isoform 2 of phosphoglucomutase (pgm2) and mutants defective in isoform 2 of hexokinase (hxk2) exhibit similar phenotypes of reduced Trk activity and increased sensitivity to toxic cations compared with tps1 mutants. In all cases Trk activity was positively correlated with levels of glucose phosphates (glc-1-P and glc-6-P). These results indicate that Tps1, like Pgm2 and Hxk2, increases the levels of glucose phosphates and suggest that these metabolites, directly or indirectly, activate Trk.  相似文献   

15.
16.
Saccharomyces cerevisiae strains carrying snf3 are defective in high affinity glucose transport, and thus are unable to grow fermentatively on media with low concentrations of glucose. A multicopy suppressor of the snf3 growth defect, SKS1 (suppressor kinase of snf3), was found to encode a putative ser/thr protein kinase homologous to Ran1p, a kinase that regulates the switch between meiosis and vegetative growth in Schizosaccharomyces pombe. Overexpression of the SKS1 open reading frame is sufficient for suppression of the growth defects of snf3 mutants. Disruption of the open reading frame eliminates this suppression; as does the mutation of the consensus ATP binding site of Sks1p. A DDSE (DNA dependent snf3 suppressor element) was found to be present in the SKS1 promoter region. The suppression by this DDSE occurs in the absence of SKS1 coding region, that is, the DDSE can suppress a snf3 sks1 double null mutant which fails to grow fermentatively on low glucose as a snf3 mutant does. Both SKS1 and its DDSE can additionally suppress the growth defects of grr1 mutants, which are also impaired in high affinity glucose transport. The snf3 genomic suppressors, rgt1, RGT2 and ssn6, are also capable of suppressing snf3 associated growth defects in a strain lacking sks1.  相似文献   

17.
    
pHluorin is a pH‐sensitive variant of green fluorescent protein for measuring intracellular pH (pHin) in living cells. We constructed a new pHluorin plasmid with the dominant selection marker KanMX. This plasmid allows pH measurements in cells without auxotrophic mutations and/or grown in chemically indefinite media. We observed differing values of pHin for three prototrophic wild‐types. The new construct was also used to determine the pHin in strains differing in the activity of the plasma membrane Pma1 H+‐ATPase and the influence of glucose on pHin. We describe in detail pHluorin measurements performed in a microplate reader, which require much less hands‐on time and much lower cell culture volumes compared to standard cuvettes measurements. We also utilized pHluorin in a new method of measuring the buffering capacity of yeast cell cytosol in vivo, shown to be ca. 52 mM /pH for wild‐type yeast and moderately decreased in mutants with affected potassium transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
    
Cation–chloride co‐transporters serve to transport Cl and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co‐transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co‐transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt‐sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma‐membrane alkali–metal cation exporters Nha1 and Ena1‐5 and the vacuolar cation–chloride co‐transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild‐type and mutated cation–chloride co‐transporters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The existence of a K+/H+ transport system in plasma membrane vesicles from Saccharomyces cerevisiae is demonstrated using fluorimetric monitoring of proton fluxes across vesicles (ACMA fluorescence quenching). Plasma membrane vesicles used for this study were obtained by a purification/reconstitution protocol based on differential and discontinuous sucrose gradient centrifugations followed by an octylglucoside dilution/gel filtration procedure. This method produces a high percentage of tightly-sealed inside-out plasma membrane vesicles. In these vesicles, the K+/H+ transport system, which is able to catalyse both K+ influx and efflux, is mainly driven by the K+ transmembrane gradient and can function even if the plasma membrane H+-ATPase is not active. Using the anionic oxonol VI and the cationic DISC2(5) probes, it was shown that a membrane potential is not created during K+ fluxes. Such a dye response argues for the presence of a K+/H+ exchange system in S. cerevisiae plasma membrane and established the non-electrogenic character of the transport. The maximal rate of exchange is obtained at pH 6·8. This reversible transport system presents a high selectivity for K+ among other monovalent cations and a higher affinity for the K+ influx into the vesicles (exit from cells). The possible role of this K+/H+ exchange system in regulation of internal potassium concentration in S. cerevisiae is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号