首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dongbin Xiu 《工程优选》2013,45(6):489-504
A fast numerical approach for robust design optimization is presented. The core of the method is based on the state-of-the-art fast numerical methods for stochastic computations with parametric uncertainty. These methods employ generalized polynomial chaos (gPC) as a high-order representation for random quantities and a stochastic Galerkin (SG) or stochastic collocation (SC) approach to transform the original stochastic governing equations to a set of deterministic equations. The gPC-based SG and SC algorithms are able to produce highly accurate stochastic solutions with (much) reduced computational cost. It is demonstrated that they can serve as efficient forward problem solvers in robust design problems. Possible alternative definitions for robustness are also discussed. Traditional robust optimization seeks to minimize the variance (or standard deviation) of the response function while optimizing its mean. It can be shown that although variance can be used as a measure of uncertainty, it is a weak measure and may not fully reflect the output variability. Subsequently a strong measure in terms of the sensitivity derivatives of the response function is proposed as an alternative robust optimization definition. Numerical examples are provided to demonstrate the efficiency of the gPC-based algorithms, in both the traditional weak measure and the newly proposed strong measure.  相似文献   

2.
We present stochastic projection schemes for approximating the solution of a class of deterministic linear elliptic partial differential equations defined on random domains. The key idea is to carry out spatial discretization using a combination of finite element methods and stochastic mesh representations. We prove a result to establish the conditions that the input uncertainty model must satisfy to ensure the validity of the stochastic mesh representation and hence the well posedness of the problem. Finite element spatial discretization of the governing equations using a stochastic mesh representation results in a linear random algebraic system of equations in a polynomial chaos basis whose coefficients of expansion can be non‐intrusively computed either at the element or the global level. The resulting randomly parametrized algebraic equations are solved using stochastic projection schemes to approximate the response statistics. The proposed approach is demonstrated for modeling diffusion in a square domain with a rough wall and heat transfer analysis of a three‐dimensional gas turbine blade model with uncertainty in the cooling core geometry. The numerical results are compared against Monte–Carlo simulations, and it is shown that the proposed approach provides high‐quality approximations for the first two statistical moments at modest computational effort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
We propose a hybrid formulation combining stochastic reduced basis methods with polynomial chaos expansions for solving linear random algebraic equations arising from discretization of stochastic partial differential equations. Our objective is to generalize stochastic reduced basis projection schemes to non-Gaussian uncertainty models and simplify the implementation of higher-order approximations. We employ basis vectors spanning the preconditioned stochastic Krylov subspace to represent the solution process. In the present formulation, the polynomial chaos decomposition technique is used to represent the stochastic basis vectors in terms of multidimensional Hermite polynomials. The Galerkin projection scheme is then employed to compute the undetermined coefficients in the reduced basis approximation. We present numerical studies on a linear structural problem where the Youngs modulus is represented using Gaussian as well as lognormal models to illustrate the performance of the hybrid stochastic reduced basis projection scheme. Comparison studies with the spectral stochastic finite element method suggest that the proposed hybrid formulation gives results of comparable accuracy at a lower computational cost.  相似文献   

4.
Recently, a novel nonparametric probabilistic method for modeling and quantifying model-form uncertainties in nonlinear computational mechanics was proposed. Its potential was demonstrated through several uncertainty quantification (UQ) applications in vibration analysis and nonlinear computational structural dynamics. This method, which relies on projection-based model order reduction to achieve computational feasibility, exhibits a vector-valued hyperparameter in the probability model of the random reduced-order basis and associated stochastic projection-based reduced-order model. It identifies this hyperparameter by formulating a statistical inverse problem, grounded in target quantities of interest, and solving the corresponding nonconvex optimization problem. For many practical applications, however, this identification approach is computationally intensive. For this reason, this paper presents a faster predictor-corrector approach for determining the appropriate value of the vector-valued hyperparameter that is based on a probabilistic learning on manifolds. It also demonstrates the computational advantages of this alternative identification approach through the UQ of two three-dimensional nonlinear structural dynamics problems associated with two different configurations of a microelectromechanical systems device.  相似文献   

5.
The computational effort in determining the dynamic response of linear systems is usually reduced by adopting the well-known modal analysis along with modal truncation of higher modes. However, in the case in which the contribution of higher modes is not negligible, modal correction methods have been introduced to improve the accuracy of the dynamic response, for both deterministic and stochastic input. In the latter case the random response is usually corrected via various methods determined as rough extensions of methods originally proposed for deterministic input. Consequently the efficiency of the correction methods is not suitable, from both theoretical and computational points of view. In this paper, a new approach to cope with the non-stationary response of linear systems is presented. The proposed modal correction method provides a correction term determined as a pseudo-stationary contribution of the equation governing either first-order or second-order statistics. Owing to the fact that no truncation criteria are well established for random vibration study, the proposed modal correction method offers a suitable vehicle for determining very accurately the stochastic response of MDOF linear systems under Gaussian stationary and non stationary excitation as evidenced in the numerical applications.  相似文献   

6.
Lifetime cost optimization with time-dependent reliability   总被引:1,自引:0,他引:1  
Zhen Hu 《工程优选》2014,46(10):1389-1410
Product lifetime cost is largely determined by product lifetime reliability. In product design, the former is minimized while the latter is treated as a constraint and is usually estimated by statistical means. In this work, a new lifetime cost optimization model is developed where the product lifetime reliability is predicted with computational models derived from physical principles. With the physics-based reliability method, the state of a system is indicated by computational models, and the time-dependent system reliability is then predicted for a given set of distributions and stochastic processes in the model input. A sampling approach to extreme value distributions of input stochastic processes is employed to make the system reliability analysis efficient and accurate. The physics-based reliability analysis is integrated with the lifetime cost model. The integration enables the minimal lifetime costs including those of maintenance and warranty. Two design examples are used to demonstrate the proposed model.  相似文献   

7.
Reliability-based design of a system often requires the minimization of the probability of system failure over the admissible space for the design variables. For complex systems this probability can rarely be evaluated analytically and so it is often calculated using stochastic simulation techniques, which involve an unavoidable estimation error and significant computational cost. These features make efficient reliability-based optimal design a challenging task. A new method called Stochastic Subset Optimization (SSO) is proposed here for iteratively identifying sub-regions for the optimal design variables within the original design space. An augmented reliability problem is formulated where the design variables are artificially considered as uncertain and Markov Chain Monte Carlo techniques are implemented in order to simulate samples of them that lead to system failure. In each iteration, a set with high likelihood of containing the optimal design parameters is identified using a single reliability analysis. Statistical properties for the identification and stopping criteria for the iterative approach are discussed. For problems that are characterized by small sensitivity around the optimal design choice, a combination of SSO with other optimization algorithms is proposed for enhanced overall efficiency.  相似文献   

8.
Kim  Ki-Joo  Diwekar  Urmila M. 《IIE Transactions》2002,34(9):761-777
This paper presents hierarchical improvements to combinatorial stochastic annealing algorithms using a new and efficient sampling technique. The Hammersley Sequence Sampling (HSS) technique is used for updating discrete combinations, reducing the Markov chain length, determining the number of samples automatically, and embedding better confidence intervals of the samples. The improved algorithm, Hammersley stochastic annealing, can significantly improve computational efficiency over traditional stochastic programming methods. This new method can be a useful tool for large-scale combinatorial stochastic programming problems. A real-world case study involving solvent selection under uncertainty illustrates the usefulness of this new algorithm.  相似文献   

9.
This paper focuses on the computation of statistical moments of strains and stresses in a random system model where uncertainty is modeled by a stochastic finite element method based on the polynomial chaos expansion. It identifies the cases where this objective can be achieved by analytical means using the orthogonality property of the chaos polynomials and those where it requires a numerical integration technique. To this effect, the applicability and efficiency of several numerical integration schemes are considered. These include the Gauss–Hermite quadrature with the direct tensor product—also known as the Kronecker product—Smolyak's approximation of such a tensor product, Monte Carlo sampling, and the Latin Hypercube sampling method. An algorithm for reducing the dimensionality of integration under a direct tensor product is also explored for optimizing the computational cost and complexity. The convergence rate and algorithmic complexity of all of these methods are discussed and illustrated with the non‐deterministic linear stress analysis of a plate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
11.
In optimization under uncertainty for engineering design, the behavior of the system outputs due to uncertain inputs needs to be quantified at each optimization iteration, but this can be computationally expensive. Multifidelity techniques can significantly reduce the computational cost of Monte Carlo sampling methods for quantifying the effect of uncertain inputs, but existing multifidelity techniques in this context apply only to Monte Carlo estimators that can be expressed as a sample average, such as estimators of statistical moments. Information reuse is a particular multifidelity method that treats previous optimization iterations as lower fidelity models. This work generalizes information reuse to be applicable to quantities whose estimators are not sample averages. The extension makes use of bootstrapping to estimate the error of estimators and the covariance between estimators at different fidelities. Specifically, the horsetail matching metric and quantile function are considered as quantities whose estimators are not sample averages. In an optimization under uncertainty for an acoustic horn design problem, generalized information reuse demonstrated computational savings of over 60% compared with regular Monte Carlo sampling.  相似文献   

12.
This paper proposes a global optimization framework to address the high computational cost and non convexity of Optimal Experimental Design (OED) problems. To reduce the computational burden and the presence of noise in the evaluation of the Shannon expected information gain (SEIG), this framework proposes the coupling of Laplace approximation and polynomial chaos expansions (PCE). The advantage of this procedure is that PCE allows large samples to be employed for the SEIG estimation, practically vanishing the noisy introduced by the sampling procedure. Consequently, the resulting optimization problem may be treated as deterministic. Then, an optimization approach based on Kriging surrogates is employed as the optimization engine to search for the global solution with limited computational budget. Four numerical examples are investigated and their results are compared to state-of-the-art stochastic gradient descent algorithms. The proposed approach obtained better results than the stochastic gradient algorithms in all situations, indicating its efficiency and robustness in the solution of OED problems.  相似文献   

13.
Within the performance-based earthquake engineering (PBEE) framework, the fragility model plays a pivotal role. Such a model represents the probability that the engineering demand parameter (EDP) exceeds a certain safety threshold given a set of selected intensity measures (IMs) that characterize the earthquake load. The-state-of-the art methods for fragility computation rely on full non-linear time–history analyses. Within this perimeter, there are two main approaches: the first relies on the selection and scaling of recorded ground motions; the second, based on random vibration theory, characterizes the seismic input with a parametric stochastic ground motion model (SGMM). The latter case has the great advantage that the problem of seismic risk analysis is framed as a forward uncertainty quantification problem. However, running classical full-scale Monte Carlo simulations is intractable because of the prohibitive computational cost of typical finite element models. Therefore, it is of great interest to define fragility models that link an EDP of interest with the SGMM parameters — which are regarded as IMs in this context. The computation of such fragility models is a challenge on its own and, despite a few recent studies, there is still an important research gap in this domain. This comes with no surprise as classical surrogate modeling techniques cannot be applied due to the stochastic nature of SGMM. This study tackles this computational challenge by using stochastic polynomial chaos expansions to represent the statistical dependence of EDP on IMs. More precisely, this surrogate model estimates the full conditional probability distribution of EDP conditioned on IMs. We compare the proposed approach with some state-of-the-art methods in two case studies. The numerical results show that the new method prevails over its competitors in estimating both the conditional distribution and the fragility functions.  相似文献   

14.
This paper investigates the uncertainty in the mechanical response of foam-filled honeycomb cores by means of a computational multi-scale approach. A finite element procedure is adopted within a purely kinematical multi-scale constitutive modelling framework to determine the response of a periodic arrangement of aluminium honeycomb core filled with PVC foam. By considering uncertainty in the geometric properties of the microstructure, a significant computational cost is added to the solution of a large set of microscopic equilibrium problems. In order to tackle this high cost, we combine two strategies. Firstly, we make use of symmetry conditions present in a representative volume element of material. Secondly, we build a statistical approximation to the output of the computer model, known as a Gaussian process emulator. Following this double approach, we are able to reduce the cost of performing uncertainty analysis of the mechanical response. In particular, we are able to estimate the 5th, 50th, and 95th percentile of the mechanical response without resorting to more computationally expensive methods such as Monte Carlo simulation. We validate our results by applying a statistical adequacy test to the emulator.  相似文献   

15.
刘纲  罗钧  秦阳  张建新 《工程力学》2016,33(6):138-145
针对马尔可夫链蒙特卡罗(MCMC)模型修正方法在待修正参数维数较高时不易收敛和计算效率低下的问题,建立了融合自适应算法和相关向量机的快速模型修正方法。基于广义无偏见先验分布,推导了待修正参数的后验分布;在标准MCMC方法的基础上,引入延缓拒绝算法以提高新样本接受概率;引入自适应算法以自主调整建议分布的带宽。通过相关向量机建立待修正参数与有限元模型理论计算值之间的回归模型,以提高模型修正的计算效率。数值模拟和试验结构的模型修正结果表明,该方法的收敛速度较快,计算效率优于传统的一阶优化模型修正方法,为解决不确定性模型修正中的计算效率提供了一种新手段。  相似文献   

16.
蒋伟  刘纲 《工程力学》2019,36(6):101-108
针对传统贝叶斯算法在高维参数下采样效率低且收敛难的问题,建立了基于多链差分进化算法的贝叶斯有限元模型修正方法。在标准马尔可夫链蒙特卡罗(MCMC)方法的基础上,引入差分进化算法,通过多条马氏链间的随机差分运算来自适应选择条件分布的大小和方向以快速逼近目标分布;引入子空间采样算法,通过自适应选择优良的参数维度进行采样以提高采样效率;引入异常链检测算法,通过在采样的非平稳期对马氏链进行异常检测与剔除以提高在平稳期的采样效率。简支梁理论模型和实验室4层框架结构的模型修正结果表明:该方法修正精度较高,且具有良好的抗噪性,在高阶频率以及振型下的修正效果均优于DRAM算法,为解决不确定性模型修正中的计算精度提供了一种新手段。  相似文献   

17.
Topology optimization of large scale structures is computationally expensive, notably because of the cost of solving the equilibrium equations at each iteration. Reduced order models by projection, also known as reduced basis models, have been proposed in the past for alleviating this cost. We propose here a new method for coupling reduced basis models with topology optimization to improve the efficiency of topology optimization of large scale structures. The novel approach is based on constructing the reduced basis on the fly, using previously calculated solutions of the equilibrium equations. The reduced basis is thus adaptively constructed and enriched, based on the convergence behavior of the topology optimization. A direct approach and an approach with adjusted sensitivities are described, and their algorithms provided. The approaches are tested and compared on various 2D and 3D minimum compliance topology optimization benchmark problems. Computational cost savings by up to a factor of 12 are demonstrated using the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The stochastic volatility jump diffusion model with jumps in both return and volatility leads to a two-dimensional partial integro-differential equation (PIDE). We exploit a fast exponential time integration scheme to solve this PIDE. After spatial discretization and temporal integration, the solution of the PIDE can be formulated as the action of an exponential of a block Toeplitz matrix on a vector. The shift-invert Arnoldi method is employed to approximate this product. To reduce the computational cost, matrix splitting is combined with the multigrid method to deal with the shift-invert matrix-vector product in each inner iteration. Numerical results show that our proposed scheme is more robust and efficient than the existing high accurate implicit-explicit Euler-based extrapolation scheme.  相似文献   

19.
Stochastic analysis of structure with non-Gaussian material property and loading in the framework of polynomial chaos (PC) is considered. A new approach for the solution of stochastic mechanics problem with random coefficient is presented. The major focus of the method is to consider reduced size of expansion in an iterative manner to overcome the problem of large system matrix in conventional PC expansion. The iterative method is based on orthogonal expansion of stochastic responses and generation of an iterative PC based on the responses of the previous iteration. The polynomials are evaluated using Gram-Schmidt orthogonalization process. The numbers of random variables in PC expansion are reduced by considering only the dominant components of the response characteristics, which is evaluated using Karhunen-Loève (KL) expansion. In case of random material field problem, the KL expansion is used to discretize and simulate the non-Gaussian random field. Independent component analysis (ICA) is carried out on the non-Gaussian KL random variables to minimize statistical dependence. The usefulness of the proposed method in terms of accuracy and computational efficiency is examined. From the numerical analysis of three different types of structural mechanics problems, the proposed iterative method is observed to be computationally more efficient and accurate than conventional PC method for solution of linear elastostatic structural mechanics problems.  相似文献   

20.
It is important to design robust and reliable systems by accounting for uncertainty and variability in the design process. However, performing optimization in this setting can be computationally expensive, requiring many evaluations of the numerical model to compute statistics of the system performance at every optimization iteration. This paper proposes a multifidelity approach to optimization under uncertainty that makes use of inexpensive, low‐fidelity models to provide approximate information about the expensive, high‐fidelity model. The multifidelity estimator is developed based on the control variate method to reduce the computational cost of achieving a specified mean square error in the statistic estimate. The method optimally allocates the computational load between the two models based on their relative evaluation cost and the strength of the correlation between them. This paper also develops an information reuse estimator that exploits the autocorrelation structure of the high‐fidelity model in the design space to reduce the cost of repeatedly estimating statistics during the course of optimization. Finally, a combined estimator incorporates the features of both the multifidelity estimator and the information reuse estimator. The methods demonstrate 90% computational savings in an acoustic horn robust optimization example and practical design turnaround time in a robust wing optimization problem. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号