首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Jernerén F  Eng F  Hamberg M  Oliw EH 《Lipids》2012,47(1):65-73
Jasmonic acid (JA) is synthesized from linolenic acid (18:3n-3) by sequential action of 13-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase. The fungus Lasiodiplodia theobromae can produce large amounts of JA and was recently reported to form the JA precursor 12-oxophytodienoic acid. The objective of our study was to characterize the fatty acid dioxygenase activities of this fungus. Two strains of L. theobromae with low JA secretion (~0.2 mg/L medium) oxygenated 18:3n-3 to 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid as well as 9R-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid, which was metabolized by an AOS activity into 9-hydroxy-10-oxo-12Z,15Z-octadecadienoic acid. Analogous conversions were observed with linoleic acid (18:2n-6). Studies using [11S-2H]18:2n-6 revealed that the putative 9R-dioxygenase catalyzed stereospecific removal of the 11R hydrogen followed by suprafacial attack of dioxygen at C-9. Mycelia from these strains of L. theobromae contained 18:2n-6 as the major polyunsaturated acid but lacked 18:3n-3. A third strain with a high secretion of JA (~200 mg/L) contained 18:3n-3 as a major fatty acid and produced 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid from added 18:3n-3. This strain also lacked the JA biosynthetic enzymes present in higher plants.  相似文献   

2.
Recently, corn (Zea mays L.) hydroperoxide dehydrase was found to catalyze the conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid into an unstable fatty acid allene oxide, 12,13(S)-epoxy-9(Z),11-octadecadienoic acid. This study is concerned with the chemistry of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid in the presence of vertebrate serum albumins. Albumins were found to greatly enhance the aqueous half-life of the allene oxide, i.e. 14.1±1.8 min, 11.6±1.2 min and 4.8±0.5 min at 0 C in the presence of 15 mg/ml of bovine, human and equine serum albumins, respectively, as compared with ca. 33 sec in the absence of albumin. Degradation of allene oxide in the presence of bovine serum albumin led to the formation of a novel cyclization product, i.e. 3-oxo-2-pentyl-cyclopent-4-en-1-octanoic acid (12-oxo-10-phytoenoic acid, in which the relative configuration of the side chains attached to the five-membered ring istrans). Steric analysis of the cyclic derivative showed that the compound was largely racemic (ratio between enantiomers, 58∶42). 12-Oxo-10,15(Z)-phytodienoic acid, needed for reference purposes, was prepared by incubation of 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid with corn hydroperoxide dehydrase. Steric analysis showed that the 12-oxo-10,15(Z)-phytodienoic acid thus obtained was not optically pure but a mixture of enantiomers in a ratio of 82∶18. The first paper in this series is Reference 1.  相似文献   

3.
We investigated the catalytic and kinetic properties of allene oxide synthase (AOS; E.C. 3.2.1.92) from flaxseed (Linum usitatissimum L.). Both Michaelis constant and maximal initial velocity for the conversion of 9(S)-and 13(S)-hydroper-oxides of linoleic and linolenic acid were determined by a photometric assay, 13(S)-Hydroperoxy-9(Z), 11(E)-octadecadienoic acid [13(S)-HPOD] as the most effective substrate was converted at 116.9±5.8 nkat/mg protein by the flax enzyme extract. The enzyme was also incubated with a series of variable conjugated hydroperoxy dienyladipates. Substrates with a shape similar to the natural hydroperoxides showed the best reactivity. Monoenoic substrates as oleic acid hydroperoxides were not converted by the enzyme. In contrast, 12-hydroperoxy-9(Z), 13(E)-octadecadienoic acid was a strong competitive inhibitor for AOS catalyzed degradation of 13(S)-HPOD. The inhibitor constant was determined to be 0.09 μM. Based on these results, we concluded that allene oxide synthase requires conjugated diene hydroperoxides for successful catalysis. Studying the enantiomeric preference of the enzyme, we found that AOS was also able to metabolize (R)-configurated fatty acid hydroperoxides. Conversion of these substrates into labile allene oxides was confirmed by steric analysis of the stable α-ketol hydrolysis products.  相似文献   

4.
The mechanism of the recombinant tomato allene oxide synthase (LeAOS3, CYP74C3) was studied. Incubations of linoleic acid (9S)-hydroperoxide with dilute suspensions of LeAOS3 (10-20 s, 0 degrees C) yield mostly the expected allene oxide (12Z)-9,10-epoxy-10,12-octadecadienoic acid (9,10-EOD), which was detected as its methanol-trapping product. In contrast, the relative yield of 9,10-EOD progressively decreased when the incubations were performed with fourfold, tenfold, or 80-fold larger amounts of LeAOS3, while alpha-ketol and the cyclopentenone rac-cis-10-oxo-11-phytoenoic acid (10-oxo-PEA) became the predominant products. Both the alpha-ketol and 10-oxo-PEA were also produced when LeAOS3 was exposed to preformed 9,10-EOD, which was generated by maize allene oxide synthase (CYP74A). LeAOS3 also converted linoleic acid (13S)-hydroperoxide into the corresponding allene oxide, but with about tenfold lower yield of cyclopentenone. The results indicate that in contrast to the ordinary allene oxide synthases (CYP74A subfamily), LeAOS3 (CYP74C subfamily) is a multifunctional enzyme, catalyzing not only the synthesis, but also the hydrolysis and cyclization of allene oxide.  相似文献   

5.
During our ongoing project on the biosynthesis of R-(+)-octane-1,3-diol the metabolism of linoleic acid was investigated in stored apples after injection of [1-14C]-, [9,10,12,13-3H]-, 13C18- and unlabeled substrates. After different incubation periods the products were analyzed by gas chromatography-mass spectroscopy (MS), high-performance liquid chromatography-MS/MS, and HPLC-radiodetection. Water-soluble compounds and CO2 were the major products whereas 13(R)-hydroxy- and 13-keto-9(Z),11(E)-octadecadienoic acid, 9(S)-hydroxy-and 9-keto-10(E),12(Z)-octadecadienoic acid, and the stereoisomers of the 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids were identified as the major metabolites found in the diethyl ether extracts. Hydroperoxides were not detected. The ratio of 9/13-hydroxy- and 9/13-keto-octadecadienoic acid was 1∶4 and 1∶10, respectively. Chiral phase HPLC of the methyl ester derivatives showed enantiomeric excesses of 75% (R) and 65% (S) for 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 9-hydroxy-10(E),12(Z)-octadecadienoic acid, respectively. Enzymatically active homogenates from apples were able to convert unlabeled linoleic acid into the metabolites. Radiotracer experiments showed that the transformation products of linoleic acid were converted into (R)-octane-1,3-diol. 13(R)-Hydroxy-9(Z), 11(E)-octadecadienoic acid is probably formed in stored apples from 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid. It is possible that the S-enantiomer of the hydroperoxide is primarily degraded by enzymatic side reactions, resulting in an enrichment of the R-enantiomer and thus leading to the formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid.  相似文献   

6.
Treatment of (13S,9Z,11E)-13-hydroperoxy-9,11-octadecadienoic acid (13S-HPODE) with strong alkali resulted in the formation of about 75% of the corresponding hydroxy acid, (13S,9Z,11E)-13-hydroxyl-9,11-octadecadienoic acid (13S-HPODE), and the remaining 25% of products was a mixture of several oxidized fatty acids, the majority of which was formed from (9Z,11R,S,12S,R)-13-oxo-11, 12-epoxy-9-octadecenoic acid by Favorskii rearrangement (Gardner, H.W.,et al. (1993)Lipids 28, 487–495). In the present work, isotope experiments were completed in order to get further information about the initial steps of the alkali-promoted decomposition of 13S-HPODE.1. Reaction of [hydroperoxy-18O2]13S-HPODE with 5 M KOH resulted in the formation of [hydroxy-18O]13S-HPODE and [epoxy-18O](9Z,11R,S,12S,R)-13-oxo-11, 12-epoxy-9-octadecenoic acid;2. treatment of a mixture of [U-14C]13S-HPODE and [hydroperoxy-18O2]13S-HPODE with KOH and analysis of the reaction product by radio-TLC showed that 13S-HPODE was stable under the reaction conditions and did not serve as precursor of other products;3. reaction of a mixture of [U-14C]13-oxo-9,11-octadecadienoic acid (13-OODE) and [hydroperoxy-18O2]13S-HPODE with KOH resulted in the formation of [U-14C-epoxy-18O](9Z,11R,S,12S,R)-13-oxo-11,12-epoxy-9-octadecenoic acid;4. treatment of a mixture of [hydroperoxy-18O2] 13S-HPODE and [carboxyl-18O1]13S-HPODE with KOH afforded (9Z,11R,S,12S,R)-13-oxo-11,12-epoxy-9-octadecenoic acid having an18O-labeling pattern which was in agreement with its formation by intermolecular epoxidation. It was concluded that (9Z,11R,S,12S,R)-13-oxo-11, 12-epoxy-9-octadecenoic acid is formed from 13S-HPODE by a sequence involving initial dehydration into the α,β-unsaturated ketone, 13-OODE, followed by epoxidation of the Δ11 double bond of this compound by the peroxyl anion of a second molecule of 13S-HPODE. Rapid conversion of hydroperoxides by alkali appreared to require the presence of an α,β-unsaturated ketone intermediate as an oxygen acceptor. This was supported by experiments with a saturated hydroperoxide, methyl 12-hydroperoxyoctadecanoate, which was found to be much more resistant to alkali-promoted conversion than 13S-HPODE.  相似文献   

7.
Ernst H. Oliw 《Lipids》2018,53(5):527-537
Oxylipin biosynthesis by fungi is catalyzed by both the lipoxygenase (LOX) family and the linoleate diol synthase (LDS) family of the peroxidase‐cyclooxygenase superfamily. Rhizoctonia solani, a pathogenic fungus, infects staple crops such as potato and rice. The genome predicts three genes with 9–13 introns, which code for tentative dioxygenase (DOX)–cytochrome P450 fusion enzymes of the LDS family, and one gene, which might code for a 13‐LOX. The objective was to determine whether mycelia or nitrogen powder of mycelia oxidized unsaturated C18 fatty acids to LDS‐ or LOX‐related metabolites. Mycelia converted 18:2n‐6 to 8R‐hydroxy‐9Z,12Z‐octadecadienoic acid and to an α‐ketol, 9S‐hydroxy‐10‐oxo‐12Z‐octadecenoic acid. In addition to these metabolites, nitrogen powder of mycelia oxidized 18:2n‐6 to 9S‐hydroperoxy‐10E, 12Z‐octadecadienoic, and 13S‐hydroperoxy‐9Z,11E‐octadecadienoic acids; the latter was likely formed by the predicted 13‐LOX. 18:1n‐9 was transformed into 8S‐hydroperoxy‐9Z‐octadecenoic and into 8S,9S‐dihydroxy‐10E‐octadecenoic acids, indicating the expression of 8,9‐diol synthase. The allene oxide, 9S(10)epoxy‐10,12Z‐octadecadienoic acid, is unstable and decomposes rapidly to the α‐ketol above, indicating biosynthesis by 9S‐DOX‐allene oxide synthase. This allene oxide and α‐ketol are also formed by potato stolons, which illustrates catalytic similarities between the plant host and fungal pathogen.  相似文献   

8.
13-lipoxygenases (13-LOX) catalyze the dioxygenation of various polyunsaturated fatty acids (PUFAs), of which α-linolenic acid (LeA) is converted to 13-S-hydroperoxyoctadeca-9, 11, 15-trienoic acid (13-HPOT), the precursor for the prostaglandin-like plant hormones cis-(+)-12-oxophytodienoic acid (12-OPDA) and methyl jasmonate (MJ). This study aimed for characterizing the four annotated A. thaliana 13-LOX enzymes (LOX2, LOX3, LOX4, and LOX6) focusing on synthesis of 12-OPDA and 4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl] cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid (OCPD). In addition, we performed interaction studies of 13-LOXs with ions and molecules to advance our understanding of 13-LOX. Cell imaging indicated plastid targeting of fluorescent proteins fused to 13-LOXs-N-terminal extensions, supporting the prediction of 13-LOX localization to plastids. The apparent maximal velocity (Vmax app) values for LOX-catalyzed LeA oxidation were highest for LOX4 (128 nmol·s−1·mg protein−1), with a Km value of 5.8 µM. A. thaliana 13-LOXs, in cascade with 12-OPDA pathway enzymes, synthesized 12-OPDA and OCPD from LeA and docosahexaenoic acid, previously shown only for LOX6. The activities of the four isoforms were differently affected by physiologically relevant chemicals, such as Mg2+, Ca2+, Cu2+ and Cd2+, and by 12-OPDA and MJ. As demonstrated for LOX4, 12-OPDA inhibited enzymatic LeA hydroperoxidation, with half-maximal enzyme inhibition at 48 µM. Biochemical interactions, such as the sensitivity of LOX toward thiol-reactive agents belonging to cyclopentenone prostaglandins, are suggested to occur in human LOX homologs. Furthermore, we conclude that 13-LOXs are isoforms with rather specific functional and regulatory enzymatic features.  相似文献   

9.
Incubation of [1-14C]linoleic acid with an enzyme preparation obtained from the red algaLithothamnion corallioides Crouan resulted in the formation of 11-hydroxy-9(Z),12(Z)-octadecadienoic acid as well as smaller amounts of 9-hydroxy-10(E),12(Z)-octadecadienoic acid, 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 11-keto-9(Z),12(Z)-octadecadienoic acid. Steric analysis showed that the 11-hydroxyoctadecadienoic acid had the (R) configuration. The 9- and 13-hydroxyoctadecadienoic acids were not optically pure, but were due to mixtures of 75% (R) and 25% (S) enantiomers (9-hydroxyoctadecadienoate), and 24% (R) and 76% (S) enantiomers (13-hydroxy-octadecadienoate). 11-Hydroxyoctadecadienoic acid was unstable at acidic pH. In acidified water, equal parts of 9(R,S)-hydroxy-10(E),12(Z)-octadecadienoate and 13(R,S)-hydroxy-9(Z),11(E)-octadecadienoate, plus smaller amounts of the corresponding (E),(E) isomers were produced. In aprotic solvents, acid treatment resulted in dehydration and in the formation of equal amounts of 8,10,12- and 9,11,13-octadecatrienoates. The enzymatic conversion of linoleic acid into the hydroxyoctadecadienoic acids and the ketooctadecadienoic acid was oxygen-dependent; however, inhibitor experiments indicated that neither lipoxygenase nor cytochrome P-450 were involved in the conversion. This conclusion was supported by experiments with18O2 and H2 18O, which demonstrated that the hydroxyl oxygen of the hydroxy-octadecadienoic acids and the keto oxygen of the 11-ketooctadecadienoic acid were derived from water and not from molecular oxygen. The term “oxylipin” was introduced recently (ref. 1) as an encompassing term for oxygenated compounds which are formed from fatty acids by reaction(s) involving at least one step of mono- or dixoygenase-catalyzed oxygenation.  相似文献   

10.
Seed from maize (corn) Zea mays provides a ready source of 9-lipoxygenase that oxidizes linoleic acid and linolenic acid into 9(S)-hydroperoxy-10(F), 12(Z)-octadecadienoic acid and 9(S)-hydroperoxy-10(E), 12(Z), 15(Z)-octadecatrienoic acid, respectively. Corn seed has a very active hydro-peroxide-decomposing enzyme, allene oxide synthase (AOS), which must be removed prior to oxidizing the fatty acid. A simple pH 4.5 treatment followed by centrifugation removes most of the AOS activity. Subsequent purification by ammonium sulfate fractional precipitation results in negligible improvement in 9-hydroperoxide formation. This facile alternative method of preparing 9-hydroperoxides has advantages over other commonly used plant lipoxygenases.  相似文献   

11.
Hamberg M 《Lipids》2000,35(4):353-363
[1-14C]Linoleic acid was incubated with a whole homogenate preparation from potato stolons. The reaction product contained four major labeled compounds, i.e., the α-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid (59%), the epoxy alcohol 10(S),11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoic acid (19%), the divinyl ether colneleic acid (3%), and a new cyclopentenone (13%). The structure of the last-mentioned compound was determined by chemical and spectral methods to be 2-oxo-5-pentyl-3-cyclopentene-1-octanoic acid (trivial name, 10-oxo-11-phytoenoic acid). Steric analysis demonstrated that the relative configuration of the two side chains attached to the five-membered ring was cis, and that the compound was a racemate comprising equal parts of the 9(R), 13(R) and 9(S), 13(S) enantiomers. Experiments in which specific trapping products of the two intermediates 9(S)-hydroperoxy-10(E), 12(Z)-octadecadienoic acid and 9(S), 10-epoxy-10, 12(Z)-octadecadienoic acid were isolated and characterized demonstrated the presence of 9-lipoxygenase and allene oxide synthase activities in the tissue preparation used. The allene oxide generated from linoleic acid by action of these enzymes was further converted into the cyclopentenone and α-ketol products by cyclization and hydrolysis, respectively. Incubation of [1-14C]linolenic acid with the preparation of potato stolons afforded 2-oxo-5-[2′(Z)-pentenyl]-3-cyclopentene-1-octanoic acid (trivial name, 10-oxo-11, 15(Z)-phytodienoic acid), i.e., an isomer of the jasmonate precursor 12-oxo-10, 15(Z)-phytodienoic acid. Quantitative determination of 10-oxo-11-phytoenoic acid in linoleic acid-supplied homogenates of different parts of the potato plant showed high levels in roots and stolons, lower levels in developing tubers, and no detectable levels in leaves.  相似文献   

12.
A new microbial isolate,Flavobacterium sp. DS5, converted oleic and linoleic acids to their corresponding 10-keto-and 10-hydroxy fatty acids. The hydration enzyme seems to be specific to the C-10 position. Conversion products from α- and γ-linolenic acids were identified by gas chromatography/mass spectrometry, Fourier transform infrared, and nuclear magnetic resonance as 10-hydroxy-12(Z),15(Z)-octadecadienoic and 10-hydroxy-6(Z),12(Z)-octadecadienoic acids, respectively. Products from other 9(Z)-unsaturated fatty acids also were identified as their corresponding 10-hydroxy- and 10-keto-fatty acids.Trans unsaturated fatty acid was not converted. From these results, it is concluded that strain DS5 hydratase is indeed a C-10 positional-specific andcis-specific enzyme. DS5 hydratase prefers an 18-carbon monounsaturated fatty acid. Among the C18 unsaturated fatty acids, an additional double bond at either side of the 9,10-position lowers the enzyme hydration activity. Because hydratases from other microbes also convert 9(Z)-unsaturated fatty acids to 10-hydroxy fatty acids, the C-10 positional specificity of microbial hydratases may be universal.  相似文献   

13.
Hamberg M  Olsson U 《Lipids》2011,46(9):873-878
The linoleate 9-lipoxygenase product 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid was stirred with a crude enzyme preparation from the beetroot (Beta vulgaris ssp. vulgaris var. vulgaris) to afford a product consisting of 95% of 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid (pinellic acid). The linolenic acid-derived hydroperoxide 9(S)-hydroperoxy-10(E),12(Z),15(Z)-octadecatrienoic acid was converted in an analogous way into 9(S),12(S),13(S)-trihydroxy-10(E),15(Z)-octadecadienoic acid (fulgidic acid). On the other hand, the 13-lipoxygenase-generated hydroperoxides of linoleic or linolenic acids failed to produce significant amounts of trihydroxy acids. Short-time incubation of 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid afforded the epoxy alcohol 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid as the main product indicating the sequence 9-hydroperoxide → epoxy alcohol → trihydroxy acid catalyzed by epoxy alcohol synthase and epoxide hydrolase activities, respectively. The high capacity of the enzyme system detected in beetroot combined with a simple isolation protocol made possible by the low amounts of endogenous lipids in the enzyme preparation offered an easy access to pinellic and fulgidic acids for use in biological and medical studies.  相似文献   

14.
Guava fruit was identified as a particularly rich source of 13-hydroperoxide lyase activity. The enzyme proved stable to chromatographic procedures and was purified to homogeneity. Based on gel filtration and gel electrophoresis, the native enzyme appears to be a homotetramer with subunits of 55 kD. Starting with primers based on the peptide sequence, the enzyme was cloned by polymerase chain reaction with 3′ and 5′ rapid amplification of cDNA ends. The sequence shows approximately 60–70% identity to known 13-hydroperoxide lyases and is classified in cytochrome P450 74B subfamily as CYP74B5. The cDNA was expressed in Escherichia coli (BL21 cells), with optimal enzyme activity obtained in the absence of isopropyl-β-d-thiogalactopyranoside and σ-aminolevulinic acid. The expressed enzyme metabolized 13(S)-hydroperoxylinolenic acid over 10-fold faster than 13(S)-hydroperoxylinoleic acid and the 9-hydroperoxides of linoleic and linolenic acids. 13(S)-Hydroperoxylinolenic acid was converted to 12-oxododec-9(Z)-enoic acid and 3(Z)-hexenal, as identified by gas chromatography-mass spectrometry. The turnover number with this substrate, with enzyme concentration estimated from the Soret absorbance, was≈2000/s, comparable to values reported for the related allene oxide synthases. Distinctive features of the guava 13-hydroperoxide lyase and related cytochrome P450 are discussed.  相似文献   

15.
Transformation of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13S-HPOD) to 13(S)-hydroxy-9(Z),11(E)-octadecadienoic acid (13S-HOD) under alkaline conditions (0.05 to 5 M KOH) occurred first-order with respect to 13S-HPOD concentration. Overall yield was about 80%. The energy of activation at higher concentrations (3.75 to 5 M KOH) was determined to be in the range of 15.3 to 15.6 kcal. Compared to the 13S-HPOD conversion, 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13S-HPOT) was converted at a faster rate to the corresponding hydroxy fatty acid (13S-HOT), with the reaction also being first-order. Chiral phase high-performance liquid chromatography demonstrated that in the transformation the stereochemistry of both the 13S-HPOD and 13S-HPOT reactants was preserved. Manometric analyses of the KOH/13S-HPOD reaction showed an uptake of gas, which amounted to 11% of the mols of reactant 13S-HPOD on the assumption that the gas was O2. As there is a theoretical loss of 1 oxygen atom in the reaction, the fate of this oxygen (possiblyvia active oxygen species) may involve reaction with 13S-HPOD/13SHOD to form the 20% by-products.  相似文献   

16.
Hamberg M 《Lipids》1999,34(11):1131-1142
[1-14C]Linoleic acid was incubated with a whole homogenate preparation of potato leaves (Solanum tuberosum 1., var. Bintje). The methyl-esterified product was subjected to straight-phase high-performance liquid chromatography and was found to contain four major radioactive oxidation products, i.e., the epoxy alcohols methyl 10(S), 11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoate (14% of the recovered radioactivity) and methyl 12(R), 13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoate (14%), and the trihydroxy derivatives methyl 9(S), 10(S), 11(R)-trihydroxy-12(Z)-octadecenoate (18%) and methyl 9(S), 12(S), 13(S)-trihydroxy-10(E)-octadecenoate (30%). The structures and stereochemical configurations of these oxylipins were determined by chemical and spectral methods using the authentic compounds as references. Incubations performed in the presence of glutathione peroxidase revealed that lipoxygenase activity of potato leaves generated the 9- and 13-hydroperoxides of linoleic acid in a ratio of 95∶5. Separate incubations of these hydroperoxides showed that linoleic acid 9(S)-hydroperoxide was metabolized into epoxy alcohols by particle-bound epoxy alcohol synthase activity, whereas the 13-hydroperoxide was metabolized into α- and γ-ketols by a particle-bound allene oxide synthase. It was concluded that the main pathway of linoleic acid metabolism in potato leaves involved 9-lipoxygenase-catalyzed oxygenation into linoleic acid 9(S)-hydroperoxide followed by rapid conversion of this hydroperoxide into epoxy alcohols and a slower, epoxide hydrolase-catalyzed conversion of the epoxy alcohols into trihydroxyoctadecenoates. Trihydroxy derivatives of linoleic and linolenic acids have previously been reported to be growth-inhibitory to plant-pathogenic fungi, and a role of the new pathway of linoleic acid oxidation in defense reactions against pathogens is conceivable.  相似文献   

17.
Epoxy acids have been reported in seed oils from more than 60 species in 12 plant families. The discovery of 9,10-epoxyoctadec-12-ynoic and 9,10-epoxy-trans-3,cis-12-octadecadienoic acids brings to six the number of natural epoxy acids now known to occur in seed oils. These latest epoxy acids and 15,16-epoxy-cis-9,cis-12-octadecadienoic acid have been found in only one species each and at levels lower than 5% of the oil. Coronaric (9,10-epoxy-cis-12-octadecenoic) acid and 9,10-epoxystearic acid have been encountered in several seed oils, the first as much as 15% of the oil and the latter in only small amounts. Vernolic (12,13-epoxy-cis-9-octadecenoic) acid, which has been identified in numerous oils, is the only epoxy acid known to occur in seed oils at levels above 15%, and it may constitute as much as 75%. On the basis of data available to date,Vernonia anthelmintica appears to have the best potential for commercial production of an epoxy oil. Although one improved line has been selected, continued improvement is needed. Formation of epoxy acids in oilseeds during storage after harvest has been demonstrated, and may be partly responsible for the small amounts of epoxide detected in oils from a wide variety of seeds. Presented at the AOCS Meeting, New Orleans, April 1970. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

18.
A water-soluble, foaming epoxyalkene sulfonate, sodium (+)-(12S,13R)-epoxy-cis-9-octadecenyl sulfonate, was synthesized from vernonia oil (VO) by a series of simple reactions that include transesterification, metal hydride reduction, tosylation, and SN2 reactions. Conversion of VO into vernonia oil methyl esters (VOME) using sodium methoxide was quantitative. Subsequent reduction of VOME with lithium aluminum hydride yielded (+)-(12S,13R)-epoxy-cis-9-octadecenol (94%), along with minor amounts of hexadecenol, octadecenol, cis-9-octadecenol, and cis-9,12-octadecandienol. The (+)-(12S,13R)-epoxy-cis-9-octadecenol, was tosylated with p-toluenesulfonyl chloride to give (+)-(12S,13R)-epoxy-cis-9-octadecenyl tosylate at 96% yield. Iodination of the tosylate with sodium iodide and subsequent SN2 reaction with sodium sulfite afforded (+)-(12S,13R)-epoxy-cis-9-octadecenyl sulfonate (63% yield). This study demonstrates the ability to produce an epoxyalkenyl sulfonate, belonging to a class of anionic surfactants, from VO without destroying the epoxy functionality in the (+)-(12S,13R)-epoxy-cis-9-octadecenyl moiety of VO. The critical micelle concentration of the synthesized sulfonate was also determined.  相似文献   

19.
12-Oxo-10,15(Z)-phytodienoic acid biosynthesized from 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid using a preparation of corn (Zea mays L) hydroperoxide dehydrase recently was found to be a mixture of enantiomers in a ratio of 82∶18 (Hamberg, M., and Hughes, M.A. (1988)Lipids 23, 469–475). In this work, 12-oxophytodienoic acid and (+)-7-iso-jasmonic acid were converted into a common derivative, methyl 3-hydroxy-2-pentyl-cyclopentane-1-octanoate. From gas liquid chromatographic analysis of the (−)-menthoxycarbonyl derivative of methyl 3-hydroxy-2-pentyl-cyclopentane-1-octanoates prepared from 12-oxophytodienoic acid and (+)-7-iso-jasmonic acid, it could be deduced that the major enantiomer of 12-oxophytodienoic acid had the 9(S),13(S) configuration. Therefore, in the major enantiomer of 12-oxophytodienoic acid, the configurations of the side chainbearing carbons are identical to the configurations of the corresponding carbons of (+)-7-iso-jasmonic acid, thus giving support to previous studies indicating that 12-oxophytodienoic acid serves as the precursor of (+)-7-iso-jasmonic acid in plant tissue. When absolute configurations of C-9 and C-13 are not specifically indicated, phytonoic acid is used to denote 2-pentyl-cyclopentane-1-octanoic acid in which the two side chains have thecis relationship, whereas phytonoic acid (trans isomer) denotes 2-pentyl-cyclopentane-1-octanoic acid in which the two side chains have thetrans relationship.  相似文献   

20.
The significance of polyunsaturated fatty acids in cutaneous biology   总被引:3,自引:0,他引:3  
Vincent A. Ziboh 《Lipids》1996,31(1):S249-S253
The skin epidermis displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA) and 18-carbon (n-6) PUFA results in characteristic scaly skin disorder and excessive epidermal water loss. Arachidonic acid, a 20-carbon (n-6) PUFA is metabolized via the cyclooxygenase pathway into predominantly prostaglandin E2 (PGE2) PGF2α′ and PGD2 and via the lipoxygenase pathway into predominantly 15-hydroxyeicosatetraenoic acid (15-HETE). The prostaglandins modulate normal skin physiological processes at low concentrations and inflammatory reactions at high concentrations. Similarly, the very active epidermal 15-lipoxygenase transforms dihomogammalinolenic acid (DGLA) into 15-hydroxy eicosatrienoic acid (15-HETrE), eicosapentaenoic acid (EPA) into 15-hydroxyeicosapentaenoic acid (15-HEPE) and docosahexaenoic acid (DHA) into 17-hydroxydocosahexaenoic acid (17-HDoHE), respectively. These monohydroxy acids exhibit anti-inflammatory properties. In contrast, the 18-carbon (n-6) PUFA is transformed into 13-hydroxy-9,11-octadecadienoic acid (13-HODE), which exerts antiproliferative properties in the tissue. Thus the supplementation of diets with appropriate purified vegetable oils and/or fish oil may generate local cutaneous anti-inflammatory metabolites which could serve as a less toxicin vivo monotherapy or as adjuncts to standard therapeutic regimens for the management of skin inflammaory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号