首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于经典壳理论和von Karman几何非线性理论,导出了功能梯度圆底扁球壳的位移型几何非线性控制方程及简支边界条件,推导过程考虑了均匀变温场及均布外侧压力。用打靶法计算了由控制方程和边界条件提出的两点边值问题,得到了壳体轴对称变形的数值结果。考察了壳体几何参数、材料横向梯度特性、组份材料体积分数指数和弹性模量以及均匀变温场对壳体屈曲平衡路径、上/下临界荷载和平衡构形的影响。数值结果表明:随组分材料体积分数指数的增加和弹性模量的减小,壳体上临界荷载均会显著减小;体积分数指数对壳体下临界荷载影响规律较复杂;均匀升温使壳体上/下临界荷载显著增加/减小。材料横向梯度特性对简支边功能梯度圆底扁球壳屈曲平衡路径和后屈曲稳态构形有显著影响。该文末给出了便于工程设计的两个数表和一些数值曲线。  相似文献   

2.
The contribution of this paper consists of new development of transverse shear stresses through the thickness and finding an expression for the critical time step for explicit time integration of layered shells. This work presents the finite element (FE) formulation and implementation of a higher‐order shear deformable shell element for dynamic explicit analysis of composite and sandwich shells. The formulation is developed using a displacement‐based third‐order shear deformation shell theory. Using the differential equilibrium equations and the interlayer requirements, special treatment is developed for the transverse shear, resulting in a continuous, piecewise quartic distribution of the transverse shear stresses through the shell thickness. Expressions are developed for the critical time step of the explicit time integration for orthotropic homogeneous and layered shells based on the developed third‐order formulation. To assess the performance of the present shell element, it is implemented in the general non‐linear explicit dynamic FE code DYNA3D. Several problems are solved and results are presented and compared to other theoretical and numerical results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, stiffened shear‐deformable shells are analysed using the boundary element method. Coupled boundary integral equations are presented for describing curved shells under general loading conditions. The equations are based on boundary integral equations for plane stress and plate bending, with coupling terms arising from the curvature of the shell. Domain integrals are transformed into boundary integrals using the dual reciprocity technique. Stiffeners are modelled as curved beams, continuously attached to the shell. Numerical solutions calculated using the present method are compared with finite element results in two examples. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A new higher order shear deformation theory for elastic composite/sandwich plates and shells is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The present theory accounts for an approximately parabolic distribution of the transverse shear strains through the shell thickness and tangential stress-free boundary conditions on the shell boundary surface. The governing equations and boundary conditions are derived by employing the principle of virtual work. These equations are solved using Navier-type, closed form solutions. Static and dynamic results are presented for cylindrical and spherical shells and plates for simply supported boundary conditions. Shells and plates are subjected to bi-sinusoidal, distributed and point loads. Results are provided for thick to thin as well as shallow and deep shells. The accuracy of the present code is verified by comparing it with various available results in the literature.  相似文献   

5.
《Composite Structures》2012,94(1):37-49
A new higher order shear deformation theory for elastic composite/sandwich plates and shells is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The present theory accounts for an approximately parabolic distribution of the transverse shear strains through the shell thickness and tangential stress-free boundary conditions on the shell boundary surface. The governing equations and boundary conditions are derived by employing the principle of virtual work. These equations are solved using Navier-type, closed form solutions. Static and dynamic results are presented for cylindrical and spherical shells and plates for simply supported boundary conditions. Shells and plates are subjected to bi-sinusoidal, distributed and point loads. Results are provided for thick to thin as well as shallow and deep shells. The accuracy of the present code is verified by comparing it with various available results in the literature.  相似文献   

6.
A nonlinear, large deflection, elasto-plastic finite element code (EPSA) has been developed for the analysis of shells in an acoustic medium subjected to dynamic loadings. The nonlinear equations of shells are discretized with the aid of a finite difference/finite element method based upon the principle of virtual work. The resulting system of equations contains the nodal displacements as the generalized co-ordinates of the problem. The integration in time of the equations of motion is done explicitly via a central difference scheme. Shell strain-displacement relations are established by a two-dimensional finite difference scheme. The shell constitutive equations are formulated in terms of the shell stress resultants and the shell strains and curvatures. The fluid-structure interaction is accounted for by means of the doubly asymptotic approximation (DAA) expressed in terms of orthogonal fluid expansion functions. The analytically produced results satisfactorily reproduce available experimental data for dynamically loaded shells.  相似文献   

7.
In the framework of the direct approach shells are considered as deformable surfaces consisting of particles, and the relations of the theory are obtained with the methods of analytical mechanics. In the present work we assign to each particle five degrees of freedom, namely three translations and two in-plane rotations. The principle of virtual work produces all the relations of the theory of shells: equations of equilibrium, boundary conditions, definition of the force factors and the general form of constitutive equations. Remarkable consistency and clarity is achieved both in the relations of the theory and in the derivation process. A new formulation of the Piola tensors for a shell is suggested in order to transform the equations to the reference configuration. To analyze the effects of buckling or geometric stiffening, we linearize these equations in the vicinity of a pre-deformed configuration. Some new semi-analytical results on buckling and supercritical behavior of an axially compressed cylindrical shell are presented. The correspondence between the equations and the variational formulation is discussed in view of development of efficient numerical procedures for modeling nonlinear deformations of shells. Results of finite element modeling of the nonlinear deformation of a shell structure are discussed in comparison with the fully three-dimensional solution of the problem.  相似文献   

8.
In this article a FE2 shell model for thin and thick shells within a first order homogenization scheme is presented. A variational formulation for the two-scale boundary value problem and the associated finite element formulation is developed. Constraints with 5 or 9 Lagrange parameters are derived which eliminate both rigid body movements and dependencies of the shear stiffness on the size of the representative volume elements (RVEs). At the bottom and top surface of the RVEs which extend through the total thickness of the shell stress boundary conditions are present. The periodic boundary conditions at the lateral surfaces are applied in such a way that particular membrane, bending and shear modes are not restrained. This is shown by means of a homogeneous RVE. The first of all linear formulation is extended to finite strain problems introducing transformation relations for the stress resultants and the material matrix. The transformations are performed at the Gauss points on macro level. Several boundary value problems including large deformations, stability and inelasticity are computed and compared with 3D reference solutions.  相似文献   

9.
Summary. In this paper, an analytic solution is provided for the postbuckling behavior of plates and shallow cylindrical shells made of functionally graded materials under edge compressive loads and a temperature field. The material properties of the functionally graded shells are assumed to vary continuously through the thickness of the shell according to a power law distribution of the volume fraction of the constituents. The fundamental equations for thin rectangular shallow shells of FGM are obtained using the von Karman theory for large transverse deflection, and the solution is obtained in terms of mixed Fourier series. The effect of material properties, boundary conditions and thermomechanical loading on the buckling behavior and stress field are determined and discussed. The results reveal that thermomechanical coupling effects and the boundary conditions play a major role in dictating the response of the functionally graded plates and shells under the action of edge compressive loads.  相似文献   

10.
Free vibration of symmetric and antisymmetric cross-ply composite laminated truncated conical shells using the spline function technique is studied. The equilibrium equations for a truncated conical shells are formulated including first-order shear deformation theory. The equations of motion are derived in terms of displacement functions and rotational functions using stress–strain and strain–displacement relationships. The coupled differential equations are solved using Bickley-type splines to obtain the generalized eigenvalue problem by combining suitable boundary conditions. The convergence and comparative results are presented. Both symmetric and anti-symmetric cross-ply shells are considered using various types of material properties. Parametric studies are made to investigate the effect of transverse shear deformation on the frequency parameter with respect to the thickness ratio, length ratio, cone angle, and circumferential mode number using different numbers of layers under various types of boundary conditions.  相似文献   

11.
The Generalized Differential Quadrature (GDQ) Method is applied to study laminated composite degenerate shell panels such as rectangular and annular plates. The theoretical treatment is maintained general in order to expose in a unique way the procedure adopted to obtain the stress profiles through the thickness of plates without specifying the equations for rectangular and annular plates. By simply imposing some geometrical relations the equations governing the problem of plates under consideration, that are degenerate shells, are inferred from the theory of shells of revolution. The mechanical model is based on the so called First-order Shear Deformation Theory (FSDT) deduced from the three-dimensional theory in order to analyse the above moderately thick structural elements. The solution is given in terms of generalized displacement components of points lying on the middle surface of the plate. After the solution of the fundamental system of equations in terms of displacements and rotations, the generalized strains and stress resultants are evaluated by applying the Differential Quadrature rule to the generalized displacements. The transverse shear and normal stress profiles through the laminate thickness are reconstructed a posteriori by using local three-dimensional elasticity equilibrium equations. No preliminary recovery or regularization procedure on the extensional and flexural strain fields is needed when the Differential Quadrature technique is used. By using GDQ procedure through the thickness, the reconstruction procedure needs only to be corrected to properly account for the boundary equilibrium conditions. In order to verify the accuracy of the present method, GDQ results are compared with the ones obtained with semi-analytical formulations and with 3D finite element methods. Stresses of several composite plates are evaluated. Very good agreement is observed without using mixed formulations and higher order kinematical models. Various examples of stress profiles for rectangular and annular plate elements are presented to illustrate the validity and the accuracy of GDQ method.  相似文献   

12.
Abstract

The buckling of generally laminated conical shells having thickness variations under axial compression is investigated. This problem usually arises in the filament wound conical shells where the thickness changes through the length of the cone. The thickness may be assumed to change linearly through the length of the cone. The fundamental relations for a conical shell with variable thickness applying thin-walled shallow shell theory of Donnell-type and theorem of minimum potential energy have been derived. Nonlinear terms of Donnell equations are linearized by the use of adjacent-equilibrium criterion. Governing equations are solved using power series method. This procedure enables us to investigate all combinations of classical boundary conditions. The results are verified in comparison with Galerkin method and the available results in the literature. Effects of thickness function coefficient, semi-vertex angle, lamination sequence, length to diameter ratio, and initial thickness of the cone on the buckling load are investigated. It is observed that these parameters have considerable effects on the critical buckling load of a conical shell.  相似文献   

13.
A method is presented for the calculation of the electromagnetic field in systems of single-layer or multilayer coaxial cylindrical shells of infinite length excited by an oscillating current source arbitrarily oriented inside the first shell. The electric vector potential T and the magnetic scalar potential Ω are used for the evaluation of the quantities of the problem. The Helmholtz equations for T and Ω are transformed into integral equations by the use of the Green's function method. Applying the boundary element method, three systems of simultaneous equations have to be solved to give the sought field quantity  相似文献   

14.
A theoretical framework is presented for analysing the coupled non‐linear response of shallow doubly curved adaptive laminated piezoelectric shells undergoing large displacements and rotations. The formulated mechanics incorporate coupling between in‐plane and flexural stiffness terms due to geometric curvature, coupling between mechanical and electric fields, and encompass geometric non‐linearity effects due to large displacements and rotations. The governing equations are formulated explicitly in orthogonal curvilinear co‐ordinates and are combined with the kinematic assumptions of a mixed‐field shear‐layerwise shell laminate theory. Based on the above formulation, a finite element methodology together with an incremental‐iterative technique, based on Newton–Raphson method is formulated. An eight‐node coupled non‐linear shell element is also developed. Various evaluation cases on laminated curved beams and cylindrical panels illustrate the capability of the shell finite element to predict the complex non‐linear behaviour of active shell structures including buckling, which is not captured by linear shell models. The numerical results also show the inherent capability of piezoelectric shell structures to actively induce large displacements through piezoelectric actuators, by jumping between multiple equilibrium states. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The free vibration analysis of rotating functionally graded (FG) cylindrical shells subjected to thermal environment is investigated based on the first order shear deformation theory (FSDT) of shells. The formulation includes the centrifugal and Coriolis forces due to rotation of the shell. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The initial thermo-mechanical stresses are obtained by solving the thermoelastic equilibrium equations. The equations of motion and the related boundary conditions are derived using Hamilton’s principle. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to discretize the thermoelastic equilibrium equations and the equations of motion. The convergence behavior of the method is demonstrated and comparison studies with the available solutions in the literature are performed. Finally, the effects of angular velocity, Coriolis acceleration, temperature dependence of material properties, material property graded index and geometrical parameters on the frequency parameters of the FG cylindrical shells with different boundary conditions are investigated.  相似文献   

16.
以Hamilton正则方程的半解析法为基础,为一类双壳结构的振动特性提出了一种新的数学模型。基本步骤:(1)独立地建立内外壳和连接筋的线性方程组;(2)考虑到内外壳和连接筋的界面上的应力和位移的连续性,联立内外壳和连接筋的方程,从而得到全结构的方程组。主要优点是:采用了同一种Hamiltonian等参元离散壳和连接筋,结构的转动惯性、剪切变形等因素都得到了考虑,而且不限制壳的厚度和筋的高度;该方法象一般的有限元法一样适应复杂的边界条件和由多种材料构成的结构。本文的方法可推广用来研究加筋复合材料或加筋压电材料层合壳及相应的双壳结构的动力学问题。  相似文献   

17.
This paper deals with the development of a new three-dimensional element with two-dimensional kinematic constraints capable of analysing the mechanical behaviour of the laminated anisotropic shell-type structures. This element, originally developed for the linear analysis of plates, is extended for the linear analysis of laminated composite shells. The element can represent arbitrarily curved shells with variable number of layers and thicknesses, including ply drop-off problems. The element was validated in a previous work by the patch test. All the analytical details necessary to make possible the shell analysis are presented here. Examples are reported to show the capability of the element to predict the behaviour of complex structures and a refined computation of the stresses is carried out by integrating the equilibrium equations.  相似文献   

18.
给出了反对称正交铺层剪切圆柱壳广义大挠度Donnell 型方程, 并运用位移型摄动技术构造出该圆柱壳在均匀外压作用下的后屈曲渐近级数解。考虑到边界效应对中短圆柱壳的影响及边值问题摄动解的一致性, 详细研究了该圆柱壳端部边界层方程和奇异摄动解, 以便与中部正则摄动解相匹配。文中同时给出一些典型例子并讨论了横向剪切变形、Batdo rf 数、弹性模量比和初始几何缺陷对圆柱壳屈曲与后屈曲性态的影响。比较显示, 横向剪切变形对圆柱壳的屈曲与后屈曲有重要影响。   相似文献   

19.
Alternate hybrid stress finite element models in which the internal equilibrium equations are satisfied on the average only, while the equilibrium equations along the interelement boundaries and the static boundary conditions are adhered to exactly a priori, are developed. The variational principle and the corresponding finite element formulation, which allows the standard direct stiffness method of structural analysis to be used, are discussed. Triangular elements for a moderately thick plate and a doubly-curved shallow thin shell are developed. Kinematic displacement modes, convergence criteria and bounds for the direct flexibility-influence coefficient are examined.  相似文献   

20.
Real sharp-edted surface and subsurface flaws detected in a gas pipeline body are modeled by surface semi-elliptical mathematical cracks (cuts) in a closed cylindrical shell. A relationship is proposed that relates the geometrical dimensions of the flaws to the crack aspect ratio. Based on the line spring model, the problem of stress state and boundary equilibrium conditions of a closed cylindrical shell with a surface semi-elliptical crack is reduced to a system of singular integral equations. An algorithm was developed for computational solution of the problem, and numerical analysis was made for the dependence of stress intensity factors on loading conditions and geometrical parameters of shell and crack. For a shell subjected to internal pressure and weakened by a surface longitudinal semi-elliptical crack, a closed approximation formula is proposed that interrelates pressure level, shell/crack dimensions, and material mechanical properties in boundary equilibrium conditions. The maximal error value is indicated for the results obtained using this formula. Lvov Polytechnic State University, Lvov, Ukraine. Translated from Problemy Prochnosti, No. 4, pp. 38–47, July–August, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号