首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a (higher‐order) finite element approach for the simulation of heat diffusion and thermoelastic deformations in NC‐milling processes. The inherent continuous material removal in the process of the simulation is taken into account via continuous removal‐dependent refinements of a paraxial hexahedron base‐mesh covering a given workpiece. These refinements rely on isotropic bisections of these hexahedrons along with subdivisions of the latter into tetrahedrons and pyramids in correspondence to a milling surface triangulation obtained from the application of the marching cubes algorithm. The resulting mesh is used for an element‐wise defined characteristic function for the milling‐dependent workpiece within that paraxial hexahedron base‐mesh. Using this characteristic function, a (higher‐order) fictitious domain method is used to compute the heat diffusion and thermoelastic deformations, where the corresponding ansatz spaces are defined for some hexahedron‐based refinement of the base‐mesh. Numerical experiments compared to real physical experiments exhibit the applicability of the proposed approach to predict deviations of the milled workpiece from its designed shape because of thermoelastic deformations in the process.  相似文献   

2.
This paper presents a bubble‐inspired algorithm for partitioning finite element mesh into subdomains. Differing from previous diffusion BUBBLE and Center‐oriented Bubble methods, the newly proposed algorithm employs the physics of real bubbles, including nucleation, spherical growth, bubble–bubble collision, reaching critical state, and the final competing growth. The realization of foaming process of real bubbles in the algorithm enables us to create partitions with good shape without having to specify large number of artificial controls. The minimum edge cut is simply achieved by increasing the volume of each bubble in the most energy efficient way. Moreover, the order, in which an element is gathered into a bubble, delivers the minimum number of surface cells at every gathering step; thus, the optimal numbering of elements in each subdomain has naturally achieved. Because finite element solvers, such as multifrontal method, must loop over all elements in the local subdomain condensation phase and the global interface solution phase, these two features have a huge payback in terms of solver efficiency. Experiments have been conducted on various structured and unstructured meshes. The obtained results are consistently better than the classical kMetis library in terms of the edge cut, partition shape, and partition connectivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an examination of moving‐boundary temperature control problems. With a moving‐boundary problem, a finite‐element mesh is generated at each time step to express the position of the boundary. On the other hand, if an overlapped domain, that is, comprising foreground and background meshes, is prepared, the moving boundary problem can be solved without mesh generation at each time step by using the fictitious domain method. In this study, boundary temperature control problems with a moving boundary are formulated using the finite element, the adjoint variable, and the fictitious domain methods, and several numerical experiments are carried out. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
根据水文地质钻孔数据建立地下水三维数据场模型,进而研究地下标量场和矢量场特征,是一种新的研究方法。体积计算是地质领域的一项基础性工作,针对地质体数据的特点,研究了两种基于体素的体积计算方法——1/8 体素和移动立方体体积计算方法,并将其与种子填充算法结合,用于遍历整个数据场。最后将计算结果与传统方法进行了对比,实验证明具有较好的精度。  相似文献   

5.
Finite element method (FEM) with fixed representative volume element (RVE) encounters some difficulties in simulating the periodical postbuckling behaviors of infinite long beam or infinite large film on soft substrate under compression, because the wavelength and pattern of buckling are not known before simulation and will change with the increase of compression strain. In this paper, an adaptive periodical RVE is constructed in a mapping space to avoid remeshing in the real space, and the mapping coefficients, that is, the dimension and shape of RVE in real space, are treated as variables in average energy density minimization to obtain correct postbuckling configurations. The validness and efficiency of the proposed algorithm have been demonstrated by our numerical examples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Three‐dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high‐quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2×2 matrices do not hold for 3×3 matrices, significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equality in two dimensions of the smoothness and condition number of the Jacobian matrix objective functions does not extend to three dimensions and further, that the equality of the Oddy and condition number of the metric tensor objective functions in two dimensions also fails to extend to three dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non‐dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all‐hexahedral ‘whisker‐weaved’ meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

7.
实现了一种NURBS曲面(实体)扫描而成的扫描体逼近方法。本方法主要通过:①用系列平面的切割,把NURBS曲面(实体)进行降维处理,变成系列平面曲线;②为曲线设置局部标架;③在局部标架下求出每一曲线在每一时刻的极值点而后转换成原曲线的奇异点;④使用fast marching cubes算法删去扫描体内部点,保留扫描体边界上的奇异点;⑤由保留的奇异点通过插值或逼近方式构建边界曲面。本算法能较好地逼近NURBS扫描体,其逼近精度可通过控制切割精度和扫描过程中时间间隔的选取而有效控制。  相似文献   

8.
Ram V Mohan  Kumar K Tamma 《Sadhana》1994,19(5):765-783
Transient thermal analysis of engineering materials and structures by space discretization techniques such as the finite element method (FEM) or finite volume method (FVM) lead to a system of parabolic ordinary differential equations in time. These semidiscrete equations are traditionally solved using the generalized trapezoidal family of time integration algorithms which uses a constant single time step. This single time step is normally selected based on the stability and accuracy criteria of the time integration method employed. For long duration transient analysis and/or when severe time step restrictions as in nonlinear problems prohibit the use of taking a larger time step, a single time stepping strategy for the thermal analysis may not be optimal during the entire temporal analysis. As a consequence, an adaptive time stepping strategy which computes the time step based on the local truncation error with a good global error control may be used to obtain optimal time steps for use during the entire analysis. Such an adaptive time stepping approach is described here. Also proposed is an approach for employing combinedFEM/FVM mesh partitionings to achieve numerically improved physical representations. Adaptive time stepping is employed thoughout to practical linear/nonlinear transient engineering problems for studying their effectiveness in finite element and finite volume thermal analysis simulations. Additional support and computing times were furnished by Minnesota Supercomputer Institute at the University of Minnesota.  相似文献   

9.
A finite volume formulation for determining small strain deformations in incompressible materials is presented in detail. The formulation includes displacement and hydrostatic pressure variables. The displacement field varies linearly along and across each cell face. The hydrostatic pressure field associated with each face is uniform. The cells that discretize the structure are geometrically unrestricted, each cell can have an arbitrary number of faces. The formulation is tested on a number of linear elastic plane strain benchmark problems. This testing reveals that when meshes of multifaceted cells are employed to represent the structure then locking behaviour is exhibited, but when triangular cells are used then accurate predictions of the displacement and stress fields are produced. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
提出了一种基于快速行进法的区域填充算法,可用于内点表示或边界表示的4 连通区域的单色和渐变填充。给定区域内的一点(种子点)和要填充的颜色,算法按照快速行进法计算的波前到达时间对区域进行填充,直到整个区域填充完毕。算法的时间复杂性为O (nlogn)。  相似文献   

11.
Structured mesh quality optimization methods are extended to optimization of unstructured triangular, quadrilateral, and mixed finite element meshes. New interpretations of well‐known nodally based objective functions are made possible using matrices and matrix norms. The matrix perspective also suggests several new objective functions. Particularly significant is the interpretation of the Oddy metric and the smoothness objective functions in terms of the condition number of the metric tensor and Jacobian matrix, respectively. Objective functions are grouped according to dimensionality to form weighted combinations. A simple unconstrained local optimum is computed using a modified Newton iteration. The optimization approach was implemented in the CUBIT mesh generation code and tested on several problems. Results were compared against several standard element‐based quality measures to demonstrate that good mesh quality can be achieved with nodally based objective functions. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

12.
A Finite Volume (FV) procedure is described for solving the elastic solid mechanics equations in three dimensions on an unstructured mesh, for bodies undergoing thermal or mechanical loads. The FV procedure is developed in parallel with the conventional FE Galerkin procedure so that the differences in each approach may be clearly distinguished. The matrix form of the FV procedure is described, and is implemented in parallel with the FE procedure, both for two-dimensional quadrilateral and three-dimensional brick meshes. The FV and FE procedures are then compared against a range of benchmark problems that test the basic capability of the FV technique. It is shown to be approximately as accurate as the FE procedure on similar meshes, though its system matrix set-up time is twice as long for a node by node set-up procedure.  相似文献   

13.
目的 研究高质量、高效率的网格生成技术以实现大型复杂结构的焊接工艺仿真优化。方法 提出一种组合式的自适应四面体网格划分算法,即在高效生成各个零部件四面体网格的基础上,根据焊缝中心面的几何信息自动对焊缝附近网格进行细分,再缝合成高质量的大型复杂焊接结构的整体四面体网格,并集成到自主可控的商用网格划分软件Vision Mesh中。提出了摄动几何边界的方法,解决了大型复杂结构STL几何体在存在几何错误时网格难以生成的问题。提出了基于BVH树结构表达的背景网格表达方法,解决了多条焊缝同时高效、自动细分的难题,并通过“四面体分割–四面体合并–四面体翻转–点平滑优化”方法,实现了四面体网格的高质量优化。结果 算法网格效率可以达到200万个/h,生成的四面体99%以上均接近正四面体。可以由多个零部件一步组合生成大型结构的整体网格,并可对焊缝区域进行自动细分,大幅度简化了划分流程。将生成的网格导入国产焊接仿真软件InteWeld中进行测试,验证算法可用于大型复杂焊接结构整体应力变形的计算中。结论 实现了大型复杂焊接结构的高质量自适应四面体网格划分,使用简便操作得到了高质量网格,为焊接结构件工艺仿真优化...  相似文献   

14.
This paper presents the novel application of a vertex-centred control volume numerical scheme commonly known as the control volume finite element method to creep problems. The discretization procedure is described in detail and is valid for both structured and unstructured grids without alteration to the formulation. This enables complex geometries to be modelled which overcomes one of the perceived drawbacks of the control volume solution techniques. The example chosen to illustrate the control volume finite element method concerns modelling the mechano-sorptive creep which occurs during the drying of timber. The numerical results are benchmarked against previously published numerical results and a finite element solution. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
The control‐volume mixed finite element method is formulated for and applied to a computational domain consisting of a tetrahedral partitioning to solve the steady groundwater flow equations. Test functions consistent with piecewise constant and piecewise linear pressure distributions are used in the formulation. Comparisons are made with a standard mixed finite element formulation using lowest‐order Raviart Thomas basis functions. Results suggest that the control‐volume based formulation is a viable alternative to the standard formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A hybrid numerical scheme based on finite element and finite volume methods is developed to solve shallow water equations. In the recent past, we introduced a series of hybrid methods to solve incompressible low and high Reynolds number flows for single and two‐fluid flow problems. The present work extends the application of hybrid method to shallow water equations. In our hybrid shallow water flow solver, we write the governing equations in non‐conservation form and solve the non‐linear wave equation using finite element method with linear interpolation functions in space. On the other hand, the momentum equation is solved with highly accurate cell‐center finite volume method. Our hybrid numerical scheme is truly a segregated method with primitive variables stored and solved at both node and element centers. To enhance the stability of the hybrid method around discontinuities, we introduce a new shock capturing which will act only around sharp interfaces without sacrificing the accuracy elsewhere. Matrix‐free GMRES iterative solvers are used to solve both the wave and momentum equations in finite element and finite volume schemes. Several test problems are presented to demonstrate the robustness and applicability of the numerical method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an advanced failure surface propagation concept based on the marching cubes algorithm initially proposed in the field of computer graphics and applies it to the embedded finite element method. When modeling three‐dimensional (3D) solids at failure, the propagation of the failure surface representing a crack or shear band should not exhibit a strong sensitivity to the details of the finite element discretization. This results in the need for a propagation of the discrete failure zone through the individual finite elements, which is possible for finite elements with embedded strong discontinuities. Whereas for two‐dimensional calculations the failure zone propagation location is easily predicted by the maximal principal stress direction, more advanced strategies are needed to achieve a smooth failure surface in 3D simulations. An example for such method is the global tracking algorithm, which predicts the crack path by a scalar level set function computed on the basis of the solution of a simplified heat conduction like problem. Its prediction may though lead to various scenarios on how the failure surface may propagate through the individual finite elements. In particular, for a hexahedral eight‐node finite element, 256 such cases exist. To capture all those possibilities, the marching cubes algorithm is combined with the global tracking algorithm and the finite elements with embedded strong discontinuities in this work. In addition, because many of the possible cases result in non‐planar failure surfaces within a single finite element and because the local quantities used to describe the kinematics of the embedded strong discontinuities are physically meaningful in a strict sense only for planar failure surfaces, a remedy for such scenarios is proposed. Various 3D failure propagation simulations outline the performance of the proposed concept. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
曲面离散跟踪求交算法的研究   总被引:2,自引:0,他引:2  
跟踪求交是参数曲面求交常用的算法,而对于离散化的曲面也可以采用类似的方法。笔者提出的离散化跟踪求交是用离散方法求出交线上的某一个交点,然后根据两相交小三角面片的空间几何关系确定该交线段的方向。依次用跟踪法求出整条交线,这样就有效地避免了用离散法求交线不连贯的问题。  相似文献   

19.
An advancing front space‐filling technique for arbitrary objects has been developed. The input required consists of the specification of the desired mean point distance in space and an initial triangulation of the surface. One object at a time is removed from the active front, and, if possible, surrounded by admissible new objects. This operation is repeated until no active objects are left. Two techniques to obtain maximum packing are discussed: closest object placement (during generation) and move/enlarge (after generation). Different deposition or layering patterns can be achieved by selecting the order in which objects are eliminated from the active front. Timings show that for simple objects like spheres the scheme is considerably faster than volume mesh generators based on the advancing front technique, making it possible to generate large (> 106) yet optimal clouds of points in a matter of minutes on a PC. For more general objects, the performance may degrade depending on the complexity of the penetration checks. Several examples are included that demonstrate the capabilities of the technique. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A two‐dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号