首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an Al/sub 0.3/Ga/sub 0.7/N-Al/sub 0.05/Ga/sub 0.95/N-GaN composite-channel HEMT with enhanced linearity. By engineering the channel region, i.e., inserting a 6-nm-thick AlGaN layer with 5% Al composition in the channel region, a composite-channel HEMT was demonstrated. Transconductance and cutoff frequencies of a 1 /spl times/100 /spl mu/m HEMT are kept near their peak values throughout the low- and high-current operating levels, a desirable feature for linear power amplifiers. The composite-channel HEMT exhibits a peak transconductance of 150 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 12 GHz and a peak power gain cutoff frequency (f/sub max/) of 30 GHz. For devices grown on sapphire substrate, maximum power density of 3.38 W/mm, power-added efficiency of 45% are obtained at 2 GHz. The output third-order intercept point (OIP3) is 33.2 dBm from two-tone measurement at 2 GHz.  相似文献   

2.
The decrease of transconductance g/sub m/ and current gain cutoff frequency f/sub T/ at high drain current levels in AlGaN/GaN high-electron mobility transistors (HEMTs) severely limits the linearity and power performance of these devices at high frequencies. In this paper, the increase of the differential source access resistance r/sub s/, with drain current is shown to play an important role in the fall of g/sub m/ and f/sub T/. The increase of r/sub s/ occurs due to the quasi-saturation of the electron velocity in the source region of the channel at electric fields higher than 10 kV/cm. This has been confirmed by both experimental measurements and two-dimensional drift-diffusion simulations. Through simulations, we have identified HEMT structures with source implanted regions (or n/sup ++/ cap layers) as good candidates in order to increase the linearity of the g/sub m/ and f/sub T/ versus current profile.  相似文献   

3.
A new quantum hydrodynamic transport model based on a quantum fluid model is used for numerical calculations of different quantum sized devices. The simulation of monolithic integrated circuits of resonant tunneling structures and high electron mobility transistors (HEMT) based on In/sub 053/Ga/sub 0.47/As-In/sub 052/Al/sub 0.48/As-InP is demonstrated. With the new model, it is possible to describe quantum mechanical transport phenomena like resonant tunneling of carriers through potential barriers and particle accumulation in quantum wells. Different structure variations, especially the resonant tunneling diode area and the gate width of the HEMT structure, show variable modulations in the output characteristics of the monolithic integrated device.  相似文献   

4.
A monolithic X-band oscillator based on an AlGaN/GaN high electron mobility transistor (HEMT) has been designed, fabricated, and characterized. A common-gate HEMT with 1.5 mm of gate width in conjunction with inductive feedback is used to generate negative resistance. A high Q resonator is implemented with a short-circuit low-loss coplanar waveguide transmission line. The oscillator delivers 1.7 W at 9.556 GHz into 50-/spl Omega/ load when biased at V/sub ds/=30 V and V/sub gs/=-5 V, with dc-to-RF efficiency of 16%. Phase noise was estimated to be -87 dBc/Hz at 100-kHz offset. Low-frequency noise, pushing and pulling figures, and time-domain characterization have been performed. Experimental results show great promise for AlGaN/GaN HEMT MMIC technology to be used in future high-power microwave source applications.  相似文献   

5.
The fabrication of AlGaN/GaN double-channel high electron mobility transistors on sapphire substrates is reported. Two carrier channels are formed in an AlGaN/GaN/AlGaN/GaN multilayer structure. The DC performance of the resulting double-channel HEMT shows a wider high transconductance region compared with single-channel HEMT. Simulations provide an explanation for the influence of the double-channel on the high transconductance region. The buffer trap is suggested to be related to the wide region of high transconductance. The RF characteristics are also studied.  相似文献   

6.
正The fabrication of AlGaN/GaN double-channel high electron mobility transistors on sapphire substrates is reported.Two carrier channels are formed in an AlGaN/GaN/AlGaN/GaN multilayer structure.The DC performance of the resulting double-channel HEMT shows a wider high transconductance region compared with single-channel HEMT. Simulations provide an explanation for the influence of the double-channel on the high transconductance region.The buffer trap is suggested to be related to the wide region of high transconductance.The RF characteristics are also studied.  相似文献   

7.
We report broadband microwave noise characteristics of a high-linearity composite-channel HEMT (CC-HEMT). Owing to the novel composite-channel design, the CC-HEMT exhibits high gain and high linearity such as an output third-order intercept point (OIP3) of 33.2 dBm at 2 GHz. The CC-HEMT also exhibits excellent microwave noise performance. For 1-/spl mu/m gate-length devices, a minimum noise figure (NF/sub min/) of 0.7 dB and an associated gain (G/sub a/) of 19 dB were observed at 1 GHz, and an (NF/sub mi/) of 3.3 dB and a G/sub a/ of 10.8 dB were observed at 10 GHz. The dependence of the noise characteristics on the physical design parameters, such as the gate-source and gate-drain spacing, is also presented.  相似文献   

8.
Due to the low mobility and wide bandgap characteristics of the undoped AlGaN layer used in the conventional AlGaN-GaN HEMT as a cap layer, the RF performance of this device will be limited by its high contact resistance and high knee voltage. In this letter, we propose using the n/sup +/-GaN cap layer and the selective gate recess etching technology on the AlGaN-GaN HEMTs fabrication. With this n/sup +/-GaN instead of the undoped AlGaN as a cap layer, the device contact resistance is reduced from 1.0 to 0.4 /spl Omega//spl middot/mm. The 0.3 /spl mu/m gate-length device demonstrates an I/sub ds,max/ of 1.1 A/mm, a g/sub m,max/ of 220 mS/mm, an f/sub T/ of 43 GHz, an f/sub max/ of 68 GHz, and an output power density of 4 W/mm at 2.4 GHz.  相似文献   

9.
We fabricated decananometer-gate pseudomorphic In/sub 0.52/Al/sub 0.48/As/In/sub 0.7/Ga/sub 0.3/As high-electron mobility transistors (HEMTs) with a very short gate-channel distance. We obtained a cutoff frequency f/sub T/ of 562 GHz for a 25-nm-gate HEMT. This f/sub T/ is the highest value ever reported for any transistor. The ultrahigh f/sub T/ of our HEMT can be explained by an enhanced electron velocity under the gate, which was a result of reducing the gate-channel distance.  相似文献   

10.
The authors have investigated the reliability performance of G-band (183 GHz) monolithic microwave integrated circuit (MMIC) amplifiers fabricated using 0.07-/spl mu/m T-gate InGaAs-InAlAs-InP HEMTs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel on 3-in wafers. Life test was performed at two temperatures (T/sub 1/ = 200 /spl deg/C and T/sub 2/ = 215 /spl deg/C), and the amplifiers were stressed at V/sub ds/ of 1 V and I/sub ds/ of 250 mA/mm in a N/sub 2/ ambient. The activation energy is as high as 1.7 eV, achieving a projected median-time-to-failure (MTTF) /spl ap/ 2 /spl times/ 10/sup 6/ h at a junction temperature of 125 /spl deg/C. MTTF was determined by 2-temperature constant current stress using /spl Delta/G/sub mp/ = -20% as the failure criteria. The difference of reliability performance between 0.07-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel and 0.1-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with In/sub 0.6/Ga/sub 0.4/As channel is also discussed. The achieved high-reliability result demonstrates a robust 0.07-/spl mu/m pseudomorphic InGaAs-InAlAs-InP HEMT MMICs production technology for G-band applications.  相似文献   

11.
Shubnikov-de Haas (SdH) oscillation and Hall measurement results were compared with HEMT DC and RF characteristics for two different MOCVD grown AlGaN-GaN HEMT structures on semiinsulating 4H-SiC substrates. A HEMT with a 40-nm, highly doped AlGaN cap layer exhibited an electron mobility of 1500 cm2/V/s and a sheet concentration of 9×1012 cm at 300 K (7900 cm2/V/s and 8×1012 cm-2 at 80 K), but showed a high threshold voltage and high DC output conductance. A 27-nm AlGaN cap with a thinner, lightly doped donor layer yielded similar Hall values, but lower threshold voltage and output conductance and demonstrated a high CW power density of 6.9 W/mm at 10 GHz. The 2DEG of this improved structure had a sheet concentration of nSdH=7.8×1012 cm-2 and a high quantum scattering lifetime of τq=1.5×10-13 s at 4.2 K compared to nSdH=8.24×1012 cm-2 and τq=1.72×10-13 s for the thick AlGaN cap layer structure, Despite the excellent characteristics of the films, the SdH oscillations still indicate a slight parallel conduction and a weak localization of electrons. These results indicate that good channel quality and high sheet carrier density are not the only HEMT attributes required for good transistor performance  相似文献   

12.
High performance InP/In/sub 0.75/Ga/sub 0.25/As/InP pseudomorphic double heterojunction (DH) HEMTs with a gate length of 0.5 mu m are reported. Both DC and RF characteristics of this new type of Al-free HEMT demonstrate its suitability for microwave applications.<>  相似文献   

13.
A high capacitance density (C/sub density/) metal-insulator-metal (MIM) capacitor with niobium pentoxide (Nb/sub 2/O/sub 5/) whose k value is higher than 40, is developed for integrated RF bypass or decoupling capacitor application. Nb/sub 2/O/sub 5/ MIM with HfO/sub 2//Al/sub 2/O/sub 3/ barriers delivers a high C/sub density/ of >17 fF//spl mu/m/sup 2/ with excellent RF properties, while maintaining comparable leakage current and reliability properties with other high-k dielectrics. The capacitance from the dielectric is shown to be stable up to 20 GHz, and resonant frequency of 4.2 GHz and Q of 50 (at 1 GHz) is demonstrated when the capacitor is integrated using Cu-BEOL process.  相似文献   

14.
We report a novel approach in fabricating high-performance enhancement mode (E-mode) AlGaN/GaN HEMTs. The fabrication technique is based on fluoride-based plasma treatment of the gate region in AlGaN/GaN HEMTs and post-gate rapid thermal annealing with an annealing temperature lower than 500/spl deg/C. Starting with a conventional depletion-mode HEMT sample, we found that fluoride-based plasma treatment can effectively shift the threshold voltage from -4.0 to 0.9 V. Most importantly, a zero transconductance (g/sub m/) was obtained at V/sub gs/=0 V, demonstrating for the first time true E-mode operation in an AlGaN/GaN HEMT. At V/sub gs/=0 V, the off-state drain leakage current is 28 /spl mu/A/mm at a drain-source bias of 6 V. The fabricated E-mode AlGaN/GaN HEMTs with 1 /spl mu/m-long gate exhibit a maximum drain current density of 310 mA/mm, a peak g/sub m/ of 148 mS/mm, a current gain cutoff frequency f/sub T/ of 10.1 GHz and a maximum oscillation frequency f/sub max/ of 34.3 GHz.  相似文献   

15.
This letter reports high-performance passivated AlGaN/GaN high electron-mobility transistors (HEMTs) with 0.25-/spl mu/m gate-length for low noise applications. The devices exhibited a minimum noise figure (NF/sub min/) of 0.98 dB and an associated gain (G/sub a/) of 8.97 dB at 18 GHz. The noise resistance (R/sub n/), the measure of noise sensitivity to source mismatch, is 31/spl Omega/ at 18 GHz, which is relatively low and suitable for broad-band low noise amplifiers. The noise modeling analysis shows that the minimum noise figure of the GaN HEMT can be reduced further by reducing noise contributions from parasitics. These results demonstrate the viability of AlGaN/GaN HEMTs for low-noise as well as high power amplifiers.  相似文献   

16.
High dielectric constant (high-k) thin Ta/sub 2/O/sub 5/ films have been deposited on tensilely strained silicon (strained-Si) layers using a microwave plasma enhanced chemical vapour deposition technique at a low temperature. The deposited Ta/sub 2/O/sub 5/ films show good electrical properties as gate dielectrics and are suitable for microelectronic applications. The feasibility of integration of strained-Si and high-k dielectrics has been demonstrated.  相似文献   

17.
A planar-fabrication technology for integrating enhancement/depletion (E/D)-mode AlGaN/GaN high-electron mobility transistors (HEMTs) has been developed. The technology relies heavily on CF/sub 4/ plasma treatment, which is used in two separate steps to achieve two objectives: 1) active device isolation and 2) threshold-voltage control for the enhancement-mode HEMT formation. Using the planar process, depletion- and enhancement-mode AlGaN/GaN HEMTs are integrated on the same chip, and a direct-coupled FET logic inverter is demonstrated. Compared with the devices fabricated by a standard mesa-etching technique, the HEMTs by a planar process have comparable dc and RF characteristics with no obvious difference in the device isolation. The device isolation by a plasma treatment remains the same after 400 /spl deg/C annealing, indicating a good thermal stability. At a supply voltage (V/sub DD/) of 3.3 V, the E/D-mode inverters show an output swing of 2.85 V, with the logic-low and logic-high noise margins at 0.34 and 1.47 V, respectively.  相似文献   

18.
Variations of the low-frequency noise (LFN), power, and dc characteristics of a variety of SiN/sub x/ passivated AlGaN/GaN MODFETs with different values of Al mole-fraction, gate length, and gate drain spacing upon RF stress are investigated. It is experimentally evidenced that the variation of Al mole-fraction (x) of the barrier Al/sub x/Ga/sub 1-x/N layer from 0.2 to 0.4, has no considerable impact on the drain and gate low-frequency noise current characteristics. The most noticeable variation on the device characteristics upon long-term RF stressing has been on the pinch-off voltage. Although no material degradation by increasing the Al mole-fraction has been evidenced through the low-frequency noise data, it is observed that the variation of pinch-off voltage upon RF stressing becomes more important as the Al mole-fraction increases.  相似文献   

19.
We report an AlGaN/GaN/InGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with high-mobility two-dimensional electron gas (2-DEG) and reduced buffer leakage. The device features a 3-nm thin In/sub x/Ga/sub 1-x/N(x=0.1) layer inserted into the conventional AlGaN/GaN HEMT structure. Assisted by the InGaN layers polarization field that is opposite to that in the AlGaN layer, an additional potential barrier is introduced between the 2-DEG channel and buffer, leading to enhanced carrier confinement and improved buffer isolation. For a sample grown on sapphire substrate with MOCVD-grown GaN buffer, a 2-DEG mobility of around 1300 cm/sup 2//V/spl middot/s and a sheet resistance of 420 /spl Omega//sq were obtained on this new DH-HEMT structure at room temperature. A peak transconductance of 230 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 14.5 GHz, and a peak power gain cutoff frequency (f/sub max/) of 45.4 GHz were achieved on a 1/spl times/100 /spl mu/m device. The off-state source-drain leakage current is as low as /spl sim/5 /spl mu/ A/mm at V/sub DS/=10 V. For the devices on sapphire substrate, maximum power density of 3.4 W/mm and PAE of 41% were obtained at 2 GHz.  相似文献   

20.
研制了一款X波段增强型AlGaN/GaN高电子迁移率晶体管(HEMT)。在3英寸(1英寸=2.54 cm)蓝宝石衬底上采用低损伤栅凹槽刻蚀技术制备了栅长为0.3μm的增强型AlGaN/GaN HEMT。所制备的增强型器件的阈值电压为0.42 V,最大跨导为401 mS/mm,导通电阻为2.7Ω·mm。器件的电流增益截止频率和最高振荡频率分别为36.1和65.2 GHz。在10 GHz下进行微波测试,增强型AlGaN/GaN HEMT的最大输出功率密度达到5.76 W/mm,最大功率附加效率为49.1%。在同一材料上制备的耗尽型器件最大输出功率密度和最大功率附加效率分别为6.16 W/mm和50.2%。增强型器件的射频特性可与在同一晶圆上制备的耗尽型器件相比拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号