首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conversion of CO/H2, CO2/H2 and (CO+CO2)/H2 mixtures using cobalt catalysts under typical Fischer–Tropsch synthesis conditions has been carried out. The results show that in the presence of CO, CO2 hydrogenation is slow. For the cases of only CO or only CO2 hydrogenation, similar catalytic activities were obtained but the selectivities were very different. For CO hydrogenation, normal Fischer–Tropsch synthesis product distributions were observed with an of about 0.80; in contrast, the CO2 hydrogenation products contained about 70% or more of methane. Thus, CO2 and CO hydrogenation appears to follow different reaction pathways. The catalyst deactivates more rapidly for the conversion of CO than for CO2 even though the H2O/H2 ratio is at least two times larger for the conversion of CO2. Since the catalyst ages more slowly in the presence of the higher H2O/H2 conditions, it is concluded that water alone does not account for the deactivation and that there is a deactivation pathway that involves the assistance of CO.  相似文献   

2.
New metal/oxide (Co–Fe) catalysts (with no reduction or thermal pre-treatment) are efficient to produce light hydrocarbons with a low selectivity in CO2 by the Fischer–Tropsch synthesis. The low selectivity in CO2 is due to the occurrence of the CO2/H2 reaction. These materials are stable under reaction conditions, and only few carbides are formed during the Fischer–Tropsch reaction. X-ray analyses indicate that the most degraded phase is the (Co–Fe) alloy phase in CO/H2 reaction and the spinel phase in the CO2/H2 reaction. It was demonstrated that these composites do not behave as the simple sum of a spinel phase and a (Co–Fe) alloy but have their own properties.  相似文献   

3.
The focus of the research reported herein was to investigate the effects of phase changes, as occur during Fe catalyst activation and Fischer–Tropsch synthesis, on Fe catalyst attrition resistance. Different activation conditions (CO, H2 or syngas) were applied prior to attrition testing to a selected spray-dried Fe catalyst containing 9.1 wt.% binder SiO2, which had been shown to have the highest attrition resistance in our early study of calcined catalysts. Although, XRD indicated that different Fe phase compositions resulted in the differently activated catalyst samples, chemical attrition was not observed for any of the samples. The BET surface areas of the activated samples were smaller than that of the calcined precursor but no significant changes in pore volume and particle size were found. The attrition resistances of the differently activated catalyst samples were found to be similar to that of the calcined catalyst for this spray-dried Fe catalyst. Attrition resistance was found previously to be governed by catalyst particle density, which has been shown earlier to relate to the SiO2 network in catalysts. It is therefore suggested that the type and concentration of SiO2 that is incorporated during the preparation of spray-dried Fe catalysts have a much more significant impact on catalyst attrition than Fe phase change during activation in the presence of CO, H2 or H2+CO.  相似文献   

4.
The type of the precipitating agent used during the preparation of a precipitated iron-based Fischer–Tropsch (FT) catalyst affects the catalyst pore structure, crystallite size, phase composition and catalytic behavior. Catalysts prepared by using precipitating agents, that contain carbonate ions, have pores that are larger than those of catalysts prepared using precipitating agents that contain hydroxides. Precipitation at pH>8, using aqueous NH3 solution as a precipitating agent, results in the formation of large crystallites of FeOOH, which are not observed when Na2CO3 and K2CO3 are used. Higher % CO conversion during FT synthesis was observed with the catalyst prepared by using aqueous NH3 solution. However, this is correlated with a low selectivity for the formation of olefins. For all catalysts, in situ Mössbauer spectra recorded during FT synthesis show that the % CO conversion increases with the formation of iron carbides, viz. ′-Fe2.2C and χ-Fe2.5C.  相似文献   

5.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

6.
In this paper, results concerning the development of sulfur tolerant catalysts for Fischer–Tropsch synthesis (FTS), C2+ alcohol synthesis, methanol and/or DME synthesis are presented. In the FTS reaction on Fe using H2-rich syngas such as the biomass-derived syngas, the composition of catalyst pretreatment gas and the addition of MnO on Fe had strong impacts on its sulfur resistance as well as activity. Especially the Fe/MnO catalyst pretreated with CO showed a much lower deactivation rate and a higher FTS activity than an Fe/Cu/K catalyst in the presence of H2S. For C2+ alcohol synthesis a novel preparation method was developed for a highly active MoS2-based catalyst that is well known as the sulfur tolerant catalyst. Besides some metal sulfides were found to show higher CO hydrogenation activities than MoS2. In particular, both Rh and Pd sulfides were active and selective for the methanol synthesis. Modified Pd sulfide catalyst, i.e. sulfided Ca/Pd/SiO2, showed an activity that was about 60% of that of a Cu/ZnO/Al2O3 catalyst in the absence of H2S. This catalyst preserved 35% of the initial activity even in the presence of H2S. The sulfided Ca/Pd/SiO2 mixed with γ-Al2O3 was also available for in situ DME synthesis in the presence of H2S.  相似文献   

7.
Different applications of membranes have been proposed for Fischer–Tropsch synthesis in recent literature. Across membranes, reactants can be fed along the reactor axis or the inhibiting by-product H2O can be selectively removed. Here, the concept of enhanced conversion of CO2 containing synthesis gases to long-chain hydrocarbons by in situ H2O removal is introduced. Experimental results of in situ H2O removal under reactive conditions with an Fe-based catalyst show positive effects on conversion and yield. Additionally, catalytic membranes can be used as a defined reaction zone. In so-called plug-flow contactor membranes, high specific production rates can be achieved. Finally, a catalyst encapsulated by a zeolite membrane layer is presented as a possibility to modify product distribution.  相似文献   

8.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

9.
Catalytic desulphurization of benzothiophene (BTH) in a water/toluene emulsion, a model system for heavy oil emulsions, was achieved at 340°C using a water-soluble phosphomolybdic acid (PMA), a precursor for dispersed Mo catalyst. This process is based on the activation of H2O to generate H2 in situ via the water gas shift reaction (WGSR) for hydrodesulphurization (HDS). At 340°C with an initial CO loading of 4.14 MPa, essentially complete sulphur removal was obtained. Kinetic expressions for the WGSR and HDS of BTH with in situ generated H2 and externally supplied H2 were developed and verified experimentally. The kinetic analysis indicates that WGSR is rate-determining and desulphurization with in situ generated H2 is a relatively fast step. Apparently, in situ H2 is about seven times more active than externally supplied H2 for the hydrogenation of BTH. A mechanism for desulphurization involving initial hydrogenation of BTH to dihydrobenzothiophene (DHBTH) followed by hydrogenolysis to give ethylbenzene (EB) and H2S is proposed.  相似文献   

10.
The direct synthesis of gasoline-range iso-paraffins from synthesis gas (CO + H2, syngas) via a modified Fischer–Tropsch (FT) reaction was intensively studied under a wide range of reaction conditions by the combination of Co/SiO2 and Pd/beta in a consecutive dual reactor system. Results indicate that high selectivity of gasoline-range iso-paraffins (iso-paraffins relative to C4+ hydrocarbons was about 80%) could be achieved with the presence of Pd/beta catalyst in the lower reactor. Moreover, the performance of the Pd/beta catalyst for the titled reaction and the product composition can be significantly regulated by independently changing the reaction conditions such as catalyst amount, reaction temperature, and hydrogen partial pressure in the lower reactor. It was found that the Pd/beta catalyst used in this work was very active and stable even at a reaction temperature as low as 503 K. With the increase of hydrogen partial pressure in the lower reactor, the long-term stability of the Pd/beta catalyst was significantly enhanced.  相似文献   

11.
In situ Raman spectroscopy was used for studying the ternary 2% CrO3–6% V2O5/TiO2 catalyst, for which a synergistic effect between vanadia and chromia leads to enhanced catalytic performance for the selective catalytic reduction (SCR) of NO with NH3. The structural properties of this catalyst were studied under NH3/NO/O2/N2/SO2/H2O atmospheres at temperatures up to 400 °C and major structural interactions between the surface chromia and vanadia species are observed. The effects of oxygen, ammonia, water vapor and sulfur dioxide presence on the in situ Raman spectra are presented and discussed.  相似文献   

12.
Fischer–Tropsch synthesis was carried out in slurry phase over uniformly dispersed Co–SiO2 catalysts prepared by the sol–gel method. When 0.01–1 wt.% of noble metals were added to the Co–SiO2 catalysts, a high and stable catalytic activity was obtained over 60 h of the reaction at 503 K and 1 MPa. The addition of noble metals increased the reducibility of surface Co on the catalysts, without changing the particle size of Co metal significantly. High dispersion of metallic Co species stabilized on SiO2 was responsible for stable activity. The uniform pore size of the catalysts was enlarged by varying the preparation conditions and by adding organic compounds such as N,N-dimethylformamide and formamide. Increased pore size resulted in decrease in CO conversion and selectivity for CO2, a byproduct, and an increase in the olefin/paraffin ratio of the products. By modifying the surface of wide pore silica with Co–SiO2 prepared by the sol–gel method, a bimodal pore structured catalyst was prepared. The bimodal catalyst showed high catalytic performance with reducing the amount of the expensive sol–gel Co–SiO2.  相似文献   

13.
Cobalt catalysts (2–10 wt% Co) supported on silica-rich MCM-22 zeolites have been prepared by impregnation with aqueous Co(NO3)2 solutions. The catalysts are characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption, solid state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The catalytic properties for the Fischer–Tropsch synthesis (FTS) at 280 °C, 12.5 bar and H2/CO = 2 are evaluated. The catalysts supported on MCM-22 exhibit the highest selectivity to long-chain (C5+) hydrocarbons when MCM-22 supports are synthesized with the appropriate Si/Al ratio.  相似文献   

14.
The oxidation of supported cobalt based slurry bed Fischer–Tropsch catalysts by means of water was studied. Water is one of the Fischer–Tropsch reaction products and can probably cause oxidation and deactivation of a reduced cobalt catalyst. Model experiments using Mössbauer emission spectroscopy and thermogravimetry as well as realistic Fischer–Tropsch synthesis runs were performed. It was demonstrated that Mössbauer emission spectroscopy can successfully be applied to the investigation of high cobalt loading Fischer–Tropsch catalysts. Strong indications were found that oxidation of reduced cobalt catalysts occurs under realistic Fischer–Tropsch conditions. Mössbauer emission spectroscopy and thermogravimetry results showed that the oxidation depends on the PH2/PH2O ratio, and that oxidation proceeds to less than complete extents under certain conditions. The formation of both reducible and less reducible cobalt oxide species was observed, and the relative ratio between these species depends on the severity of the oxidation conditions.  相似文献   

15.
The effect of operating conditions (temperature, space velocity, pressure and H2/feed ratio) on the hydroconversion of Fischer–Tropsch wax and isomer content of the middle distillate was investigated by carrying out experiments according to a second order factorial design. The catalyst used was a 0.3% platinum/amorphous silica–alumina catalyst. Temperature and space velocity exhibited the biggest effect on wax conversion rate but a significant role was played by the pressure and the H2/wax ratio as well. The results indicated an inverse relationship between pressure and conversion rate while an opposite behaviour was shown by the H2/wax ratio. The effect of the last two variables was explained respectively in terms of the reaction mechanism of n-paraffins on bifuctional catalyst and the effect of the vapour–liquid equilibrium (VLE) on apparent conversion rate and isomer content of products.  相似文献   

16.
Monolithic structures made of cordierite, γ-Al2O3 and steel have been prepared as catalysts and tested for Fischer–Tropsch activity. The monoliths made of cordierite and steel were washcoated with a 20 wt.% Co–1 wt.% Re/γ-Al2O3 Fischer–Tropsch catalyst whereas the γ-Al2O3 monoliths were made by direct impregnation with an aqueous solution of the Co and Re salts resulting in a loading of 12 wt.% Co and 0.5 wt.% Re. The activity and selectivity of the different monoliths were compared with the corresponding powder catalysts.

Higher washcoat loadings resulted in decreased C5+ selectivity and olefin/paraffin ratios due to increased transport limitations. The impregnated γ-Al2O3 monoliths also showed similar C5+ selectivities as powder catalysts of small particle size (38–53 μm). Lower activities were observed with the steel monoliths probably due to experimental problems.  相似文献   


17.
Square channel cordierite monoliths have been loaded with alumina washcoat layers of various thicknesses (20–110 μm) and loaded with rhenium and cobalt resulting in a 0.1 wt.% Re/17 wt.% Co/Al2O3 catalyst. These monolithic catalysts have been tested in the Fischer–Tropsch synthesis in a temperature window (180–225 °C) under synthesis gas compositions ranging from stoichiometrically excess carbon monoxide to excess hydrogen (H2/CO = 1–3). The results include data on the activity and selectivity of CoRe/Al2O3 monolithic catalysts for FTS under these process conditions. Washcoat layers thicker than about 50 μm appear to lead to internal diffusion limitations. Thinner washcoat layers yield, depending on the conditions, to larger amounts of -olefins than alkanes for chain lengths below 10 carbon atoms. ASF and non-ASF chain length distributions are obtained for thin washcoats, whereby the chain growth probability increases from 0.83 to 0.93. Under certain conditions the amounts of alkanes even increase with chain length. These experimental results with different diffusion lengths have been used to analyze the effects of secondary reactions on FTS selectivity.  相似文献   

18.
Carbon nanotubes supported iron catalysts were prepared by incipient wetness, deposition/precipitation using K2CO3, and deposition/precipitation using urea. The incipient wetness method and the deposition/precipitation technique using urea yielded highly dispersed Fe3+ on the carbon nanotubes support. The deposition/precipitation technique using K2CO3 also yielded larger Fe2O3-crystallites. After reduction the three catalysts had similar metal surface areas. Nevertheless, the activity of these catalysts in the Fischer–Tropsch synthesis differed significantly with the catalyst prepared by incipient wetness being the most active one. It is speculated that the differences in the performance of the catalysts might be attributed to the different crystallite size distributions, which would result in a variation in the amount of the different phases present in the catalyst under reaction conditions. The selectivity in the Fischer–Tropsch synthesis over the three catalysts seems to be independent of the method of preparation.  相似文献   

19.
The influence of syngas composition on the initial behaviour of a Co/Al2O3 catalyst in Fischer–Tropsch reaction has been studied in a continuous perfectly mixed slurry reactor for an inlet H2/CO ratio between 1.6 and 3.35 keeping other conditions constant (T = 220 °C, P = 2 MPa). Significantly different behaviors of initial deactivation for CO conversion have been observed with different H2/CO ratios. It was observed that the deactivation increases with increase in H2/CO ratio and in carbon monoxide conversion. The computed liquid concentrations of CO, H2 and H2O have shown that water is the most abundant species in the liquid phase of the reactor during our experiments. The concentration of the water produced by the FT reaction seems to be the key parameter responsible of the initial behavior and then of the initial deactivation. For moderate levels of water ( corresponding to PH2O/PH2<0.4), a simple kinetic model assuming a reversible oxidation of cobalt active sites by water in competition with their reduction by hydrogen seems to represent satisfactorily the initial behaviour of the catalyst. For higher water concentrations, the irreversible deactivation should be probably taken into consideration.  相似文献   

20.
Small Co clusters (d<10 nm) supported over mixed La–Co–Fe perovskites were successfully synthesized. These catalysts were active for Fischer–Tropsch (FT). Depending on the Co to Fe ratios the mixed perovskite exhibited two different forms: the rhombohedral phase of LaCoO3 is maintained for the mixed perovskite when x>0.5, the orthorhombic phase of LaFeO3 is found for x<0.5. Interestingly only one of these structures is active for the FT reaction: the orthorhombic structure. This is most likely due to the capacity of this material to maintain its structure even with a high number of cation vacancies. These cations (mostly Co) were on purpose extracted and reduced. Magnetic measurements clearly showed their metallic nature. Rhombohedral Co–Fe mixed perovskites (x≥0.5) cannot be used as precursors for Fischer–Tropsch catalysts: their partial reduction only consists in a complete reduction of Co3+ into Co2+.

The partial reduction of orthorhombic perovskites (x<0.5) leads to active Fischer–Tropsch (FT) catalysts by formation of a metal phase well dispersed on a cation-deficient perovskite. The FT activity is related to the stability of the precursor perovskite. When initially calcined at 600 °C, a maximum of 8.6 wt.% of Co0 can be extracted from LaCo0.40Fe0.60O3 (compared to only 2 wt.% after calcination at 750 °C). The catalyst is then composed of Co0 particles of 10 nm on a stable deficient perovskite LaCo0.053+Fe0.603+O2.40. Catalytic tests showed that up to 70% in the molar selectivity for hydrocarbons was obtained at 250 °C, 40% of which was composed of the C2–C4 fraction.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号