首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combustion of isolated bubbles was investigated with a laboratory-scale fluidized-bed reactor. Two different combinations of oxygen and argon were employed as the fluidizing gas. Single bubbles of methane were injected into an incipiently fluidized bed maintained at elevated temperatures. Gas composition inside the bubbles was measured using a suction probe connected to an on-line mass spectrometer, and the temperature of the bubbles was monitored using a fast-response thermocouple. The effects of bed particle type, particle size, bubble size, bed temperature, and oxygen concentration in the emulsion phase were examined for bed temperatures between 923 and 1203 K. A theoretical model of homogeneous combustion within the bubble phase was developed for comparison to the experimental results. The model accounted for the heat and mass transfer between bubble and emulsion phases, but only considered combustion within the bubble. The results indicated that small bubble size and high oxygen concentrations in the emulsion phase enhanced bubble-phase combustion. The bed temperature also proved to be an important parameter, with higher temperatures promoting bubble combustion, but unlike some other investigations, no critical ignition temperatures were observed in either experiments or model results. The fluidized bed's particle size and particle composition influence the heat and mass-transfer coefficients, and therefore the bubble-phase combustion, but these have a smaller influence than bed temperature and bubble size. Model results for bubble-phase gas composition and temperature compared favorably with the experimental measurements.  相似文献   

2.
城市垃圾典型组分流化床燃烧特性的试验研究   总被引:3,自引:1,他引:2  
在电加热流化床炉中研究了典型垃圾可着火组分挥发份析出及焦炭燃烧特性,并考察了水份、床温等因素对燃烧的影响,同时还研究了垃圾中高水份组分的焚烧特点。研究表明:聚合物类份的析出可加速焦碳的燃烧;生物质类废弃物焦碳的表观燃烧速率随直径的增大而减小;高水份组分焚烧时间与等效表面积-体积直径成正比。研究结果可为了解垃圾焚烧特性提供基础数据。图11表l参7  相似文献   

3.
Fluidized bed combustion has attracted much interest in recent years, but there is very little data on the behavior of coal particles at these new conditions. Coal of much larger diameter (1–10 mm), much lower furnace temperatures (~850 °C), and different fluid mechanical conditions exist compared to pulverized coal furnaces. This paper presents experimental data on the behavior and combustion rates of individual coal particles aerodynamically suspended in a heated jet, to stimulate flow conditions in a fluidized bed.Tests of bituminous, sub-bituminous and lignite coals from 2 to 12 mm at jet temperatures of 705 and 816 °C in air and air diluted with equal parts of nitrogen were conducted. The ignition delay time varied from 2 to 44 sec. The devolatilization time extended up to 80 sec and was dependent mainly on particle size. The total burn time was independent of coal type and temperature, and varied as the square of the size and inversally with the oxygen concentration. The total turn time varied from 25 to 740 sec independently of coal type. The square law for the char burning rate was investigated.  相似文献   

4.
INTRAODUCTIONAsahigh-efficiencyandcleancoalcombustiontechnology,circulatingfluidizedbed(CFB)combustiontechnologyachievesrapiddevelopmentinChinaforburningvariouslow--gradefuels.ThescalerupofCFBboilersbecomesakeypointconcernedbytheCFBboilerdesigners.At...  相似文献   

5.
A simulation model of continuous lignite char combustion in a spouted bed has been developed to predict bed oxygen concentrations, bed particle size distribution, bed carbon loading, mean diameter of bed char, and the fractional combustion in spout, annulus, and fountain. The approach involves taking into account the spouted bed hydrodynamics, a burning law for individual particles, and the combines mass balances for bed char and oxidant in the three typical regions. The predicted results for various operating conditions are compared with some experimental data.  相似文献   

6.
A novel mechanism for gasifying a char is described. For thermally large particles (i.e., Bi > 0.1) the temperature distribution is non-uniform. Because different temperature regimes exist in the particle, the stages of drying, devolatilization (or pyrolysis), and reaction of the char may overlap. At some point the particle’s surface is fully devolatilized, while the particle’s interior is still undergoing drying and devolatilization. As H2O and CO2 flow out from the particle they pass through the hot surface layers of char. If the temperature is high enough, the char may be gasified. Black liquor was used here as a sample fuel. It has desirable properties for such auto-gasification; thermally large particles, a high initial water-content and a very porous and highly reactive char. Detailed numerical simulations suggest that 30 to 40% of the char may be converted simultaneously with devolatilization by auto-gasification. The larger the particle and the higher the temperature, the larger is the fraction of char gasified. For coal and peat, a typical particle size is too small for this mechanism to play any role when fired in pulverized fuel or fluidized bed furnaces. For burning wooden logs, the particle size is large and the pyrolysis time is ≈10 min., so then auto-gasification might be important.  相似文献   

7.
The catalytic steam gasification of biomass was carried out in a lab-scale fixed bed reactor in order to evaluate the effects of particle size at different bed temperatures on the gasification performance. The bed temperature was varied from 600 to 900 °C and the biomass was separated into five different size fractions (below 0.075 mm, 0.075–0.15 mm, 0.15–0.3 mm, 0.3–0.6 mm and 0.6–1.2 mm). The results show that with decreasing particle size, the dry gas yield, carbon conversion efficiency and H2 yield increased, and the content of char and tar decreased. And the differences due to particle sizes in gasification performance practically disappear as the higher temperature bound is approached. Hydrogen and carbon monoxide contents in the produced gas increase with decreasing particle size at 900 °C, reaching to 51.2% and 22.4%, respectively.  相似文献   

8.
Though the two-phase theory of fluidization is well-accepted, no direct experimental measurements of the different gas concentrations predicted to occur in bubble and particulate phases could be found in the literature. For the first time, theoretical predictions of these different gas concentrations have been validated experimentally, using a combined oxygen/bubble probe. Based on the two-phase theory, a mathematical model was developed for the combustion of a batch of char particles in a fluidized-bed combustor. The experimental oxygen concentration in the particulate phase as a function of time was well predicted by the model. Slight discrepancies for the bubble phase values were eliminated when low-oxygen-concentration bubbles were excluded from the data, attributed to some char combustion occurring in bubbles being contrary to the model assumption. The temperature difference between char and bed particles (ΔT) was the only adjustable parameter in the model. A value of 20°C fitted the burnoff times measured by visual observation of the top of the bed, for both 5 and 10 g char batch masses. Model predictions of the oxygen concentrations were not sensitive to ΔT during the first half of burnoff, when mass transfer controlled the combustion rate, so the mass transfer processes were predicted correctly by the model effectively with no adjustable parameter. The ΔT value of 20°C was significantly lower than experimental measurements of maximum burning char particle temperatures, reported to be 70°C for the small-diameter bed particles used in this work. The discrepancy was attributed to two factors: (i) the decrease in char particle temperature towards the end of the burnoff, when kinetics significantly affected the combustion rate; and (ii) a lower char particle temperature in the particulate phase than in the bubble phase, with experimental char particle temperature measurements biased towards the higher bubble phase values. It was inferred: (i) that the maximum values of ΔT measured experimentally are too high for calculation of the char particle combustion rate during the kinetic-controlled latter stage of burnoff and (ii) that reported values of the heat transfer coefficient from burning char particles to the particulate phase deduced from these particle temperature measurements may have been underestimated.  相似文献   

9.
According to the differences in components, three representative components (plastic, kitchen garbage and wood) in municipal solid waste (MSW) were pyrolyzed in a fixed bed reactor to evaluate the influence of particle size on pyrolysis performance of single-component municipal solid waste (MSW). The bed temperature was set at 800°C and each sample was separated into three different size fractions (0–5 mm, 5–10 mm and 10–20 mm). The results show for all the samples particle size has an effect on pyrolysis product yields and composition: smaller particle size results in higher gas yield with less tar and char; the decrease of particle size can increase H2 and CO contents of gas, as well as the ash and carbon element contents in the char. And the influence is the much more significant for sample with higher fixed carbon and ash contents, such as kitchen garbage, and less for sample with higher volatile content, plastic in the test.  相似文献   

10.
The generation of carbon fines by attrition during burning of Thai lignite char has been studied experimentally by means of a 92 mm i.d. continuous spouted bed combustor at different values of spouting gas velocity, bed temperature, and char feed size. Both inert particle size and static bed depth were fixed for all experimental runs. The collected data were used to analyse size distributions of both in-bed particles and elutriated fines, and to generate the suitable correlations for carbon attrition rate. Results obtained showed that attrition rate in the spouted bed is proportional to the excess of gas velocity above the minimum spouting gas velocity and the overall bed carbon surface exposed to attrition. The attrition rate constant is slightly dependent on operating bed temperature. Its values for the char studied were 1.6511 × 10?6 for 707°C operating bed temperature, and 1.1222 × 10?6 for 850°C, with the average for all tested runs being 1.224 × 10?6.  相似文献   

11.
This is a study of the devolatilization of coal in a laboratory-scale bed of silica sand, fluidized with either air or N2 and electrically heated to 750 or 900°C. Coal particles (diameter 1.4–1.7 or 2.0–2.36 mm) were fed in batches to the surface of the bed and allowed to devolatilize in either an oxidizing atmosphere of air or inert N2. In the first case, combustion of the volatiles occurred, but there was only thermal decomposition (pyrolysis) in the second situation. The resulting chars were recovered and analyzed for composition and structure, so that comparisons could be made between the effects of devolatilization with combustion and of pyrolysis in an inert atmosphere. It was found that the fractions of C and H in the char were only slightly sensitive to the type of fluidizing gas used. The amount of nitrogen in the recovered char and also the devolatilization time showed no dependence on the type of fluidizing gas, whereas BET areas were slightly larger after combustion in air. It is concluded that these effects are small relative to other errors, inherent in experiments on coal combustion, so that chars prepared in a bed fluidized by hot N2 are very similar to those formed during coal combustion at nominally the same temperature. Equally, the overall composition of the volatile matter released during combustion in a fluidized bed is the same as in pyrolysis in nitrogen. The effects of other parameters, such as the temperature of the bed, the flow rate of the fluidizing gas and the size of the coal particles are also discussed in detail. It is concluded that most of the volatiles burn in a fluidized bed (at or less than 900°C) far away from the original coal particle. Also, NOx is in effect a primary product of devolatilization, being produced in appreciable amounts when coal is heated in inert N2. The ratio of C/N in the volatiles is found to be a constant during the latter stages of devolatilization, but beforehand at lower temperatures, carbon species are preferentially released. Overall, devolatilization of small particles (< 2.4 mm) in a fluidized bed at 900°C is kinetically controlled. The activation energy is small, being 15 ± 6 kJ/mol.  相似文献   

12.
Combustion mechanisms of two types of coffee husks have been studied using single particle combustion techniques as well as combustion in a pilot-scale fluidised bed facility (FBC), 150 mm in diameter and 9 m high. Through measurements of weight-loss and particle temperatures, the processes of drying, devolatilisation and combustion of coffee husks were studied. Axial temperature profiles in the FBC were also measured during stationary combustion conditions to analyse the location of volatile release and combustion as a function of fuel feeding mode. Finally the problems of ash sintering were analysed. The results showed that devolatilisation of coffee husks (65–72% volatile matter, raw mass) starts at a low temperature range of 170–200°C and takes place rapidly. During fuel feeding using a non water-cooled system, pyrolysis of the husks took place in the feeder tube leading to blockage and non-uniform fuel flow. Measurements of axial temperature profiles showed that during under-bed feeding, the bed and freeboard temperatures were more or less the same, whereas for over-bed feeding, freeboard temperatures were much higher, indicating significant combustion of the volatiles in the freeboard. A major problem observed during the combustion of coffee husks was ash sintering and bed agglomeration. This is due to the low melting temperature of the ash, which is attributed to the high contents of K2O (36–38%) of the coffee husks.  相似文献   

13.
《Energy》2005,30(2-4):399-413
MEET (Multi-staged Enthalpy Extraction Technology) system is a new coal/wastes-fired power generation system. In order to establish the MEET system technology, a demonstration plant of commercial scale, MEET-II, was installed. The capacity of the MEET-II is 2 t/day of coal of 4 t/day of RDF. MEET-II consists of a pebble bed slagging-gasifier, a high temperature air generator, and a high temperature air combustion boiler. Gasification with high temperature air results in higher heating value of syngas. Cleaned-up syngas is used as a fuel for the boiler as well as for preheating air up to 1000 °C. Combustion and gasification tests at the MEET-II were conducted using pulverized coal as a fuel. Combustion experiments demonstrated almost complete char combustion with a short residence time, and gasification experiments demonstrated targeted calorific value of syngas, 1000 kcal/mN3.  相似文献   

14.
Combustion of premixed gas and air in shallow fluidised beds is described and some of the limits set by gas velocity and particle size are discussed.There is a lower limit of gas velocity below which heat transfer back to the distributor plate causes excessive preheat leading to pre-ignition and to temperatures well above the equilibrium level. This condition can cause particle sintering and, at worst, distributor failure. A graph showing a solution of the problem is presented.It is shown that there is a lower limit to particle size, which depends upon the particle density, below which stable combustion will not occur. This limit is set when enough of the gas/air mixture bypasses the bed without burning to prevent the bed from reaching combustion temperatures. The experimental observations are explained in terms of the two-phase theory of fluidisation by postulating that the fuel which passes through the dense phase of the fluidisation is totally burnt, while that passing up through the bed in bubbles either does not react or reacts too late for its combustion heat to be transferred to the bed.A quantitative model based upon these two ad-hoc assumptions is shown to provide reasonable agreement with the observed results and possible refinements of the simplified theory, to make it more rigorously based, are indicated.  相似文献   

15.
In this work it is studied the combustion of batches of wood char particles in a shallow fluidized bed at laboratory scale. Commercial and recarbonized chars from nut pine and cork oak parent woods were burned for bed temperatures of 600-750 °C and particle sizes range of 1.8-3.6 mm. A combustion model based on the two-phase theory of fluidization is presented to evaluate the global combustion resistance. Sherwood numbers and kinetic constants for the heterogeneous phase reaction are also assessed. Through the comparison among theoretical and experimental results, conclusions are drawn on the combustion mechanism as well as on the combustion controlling resistance. The Arrhenius law is proposed to predict the kinetic constants for the studied chars.  相似文献   

16.
Comparative combustion studies were performed on particles of pulverized coal samples from three different ranks: a high-volatile bituminous coal, a sub-bituminous coal, and two lignite coals. The study was augmented to include observations on burning pulverized woody biomass residues, in the form of sugarcane bagasse. Fuel particles, in the range of 75–90 μm, were injected in a bench-scale, transparent drop-tube furnace, electrically-heated to 1400 K, where they experienced high-heating rates, ignited and burned. The combustion of individual particles in air was observed with three-color pyrometry and high-speed high-resolution cinematography to obtain temperature–time–size histories. Based on combined observations from these techniques, in conjunction to morphological examinations of particles, a comprehensive understanding of the combustion behaviors of these fuels was developed. Observed differences among the coals have been striking. Upon pyrolysis, the bituminous coal chars experienced the phenomena of softening, melting, swelling and formation of large blowholes through which volatile matter escaped. Combustion of the volatile matter was sooty and very luminous with large co-tails forming in the wake of the particle trajectories. Only after the volatile matter flames extinguished, the char combustion commenced and was also very luminous. In contrast, upon pyrolysis, lignite coals became fragile and experienced extensive fragmentation, immediately followed by ignition of the char fragments (numbering in the order of 10–100, depending on the origin of the lignite coal) spread apart into a relatively large volume. As no separate volatile matter combustion period was evident, it is likely that volatiles burned on the surface of the chars. The combustion of the sub-bituminous coal was also different. Most particles experienced limited fragmentation, upon pyrolysis, to several char fragments, with or without the presence of brief and low-luminosity volatile flames; other particles did not fragment and directly proceeded to char combustion. Finally combustion of bagasse was once again very distinctive. Upon pyrolysis, long-lasting, low-luminosity, nearly-transparent spherical flames formed around slowly-settling devolatilizing particles. They were followed by bright, short-lived combustion of the chars. Both volatiles and chars experienced shrinking core mode of burning. For all fuels, flame and char temperature profiles were deduced from pyrometric data and burnout times were measured. Combustion rates were calculated from luminous carbon disappearance measurements, and were compared with predictions based on published kinetic expressions.  相似文献   

17.
An approximately spherical particle of coal (diam. 13–14 mm) was made by filing a larger piece. Next a hole (diam. 0.6 mm) was drilled through the centre of the sphere to end at 3 mm from the opposite face. Into this hole a fine thermocouple (o.d. 0.2 mm) was cemented. The coal was immersed into an electrically heated bed of sand, fluidised by nitrogen at 850 °C. During the subsequent pyrolysis, the temperature was measured at 3 mm inside the coal. Minima were found in the local internal rate of increase in temperature, when plotted against either time or this measured internal temperature. Here is new evidence for large coals thermally decomposing by a sequence of “endothermic waves” moving radially inwards through the coal to release volatile matter. These minima are each associated with a particular temperature and 21 of them were found (apart from that for drying) between 160 and 820 °C. Altogether four bituminous coals and one lignite were studied. Some “decomposition temperatures” were common to them all. Lower rank coals have major losses of volatile material at lower temperatures. These experiments thus support the modelling of pyrolysis using a suite of approximately 20 parallel reactions, each contributing to different extents and with different kinetic parameters and ΔH.Experiments in an identical bed, but fluidised by air, revealed endothermic waves in a coal. In this case, some of the volatiles burned in a counter-flow flame in the recently discovered cushion of air underneath such a relatively large coal particle. Also, towards the end of devolatilisation, the resulting char started to burn; different chars burned at different temperatures, all above that of the bed, even though burning was controlled by external mass transfer of O2 to the char particle. It appears that underneath a char particle, there is again a counter-flow flame, where CO (from burning the char) is oxidised by OH radicals to CO2 at ~900 °C. Most probably the carbon in the char is also oxidised by OH radicals to CO. The temperature at which a char burns is partly controlled by how much CO is oxidised by OH radicals close to the underside of the char particle. The oxidation of both CO and carbon in a char accordingly appears to be catalysed by hydrogen from the char.  相似文献   

18.
The chemistry of char was probed by studying nitrogen release under the reactions with air and oxy-fuel combustion. The experiments were conducted in a drop tube furnace and a fixed bed flow reactor. NO was observed during those experiments. The results show that the particle size of char generated at 1073 K in CO2 is larger than that in N2. However, at 1573 K, it is smaller in CO2 atmosphere due to particle breaking by gasification of char and CO2. The Fe addition increases the NO conversion ratio, and the effect of Fe rises steeply with the process going until it becomes stable in the end. The results also indicate that the release of NO increases more significantly with the Fe addition in oxy-fuel environment.  相似文献   

19.
The work described relates to the development of a coal-fired fluidized bed furnace for the generation of hot gases for industrial heating processes. Following a programme of coal model studies of the internal solids circulation rates between adjacent beds, a furnace test facility was developed in the form of two interconnected fluidized beds. One bed is operated as a partial gasifier/pyrolyser and the other as a char combustor. The gas produced by pyrolysis is mixed above the bed with the oxygen-rich gas from the char combustor and burns to give hot gas at temperatures of up to 1600°C. The use of low ash washed singles grade coal (13–25 mm size range) gives an overall combustion efficiency better than 98 per cent.  相似文献   

20.
《能源学会志》2020,93(4):1460-1472
Chemical Looping Combustion (CLC) is one of the emerging technologies for carbon capture, with less energy penalty. The present way of using pulverized coals in a fluidized bed (FB)-CLC have limitations like loss of unconverted char and gaseous combustibles, which could be mitigated by use of coarser fuel particles. Devolatilization time is a critical input for the effective design of FB-CLC systems, primarily when large fuel particles are used. The present study investigates the devolatilization time and the char yield of three coals of two shapes, namely, two high ash Indian coals and a low ash Indonesian coal and a wood (Casuarina equisetifolia) in the size range of +8–25 mm, at different fuel reactor temperatures (800–950 °C) of a hematite based CLC unit. The devolatilization times of single fuel particles during CLC are determined using a visual method called ‘Color Indistinction Method’. Indonesian coal has the longest devolatilization time among the fuels, and biomass has the least. Increasing the bed temperature enhances the rate of volatile release, whereas this effect is less pronounced in larger particles. Devolatilization of Indonesian coal is found to be strongly influenced by the changes in operating conditions. With the decrease in sphericity, a maximum of 56% reduction in devolatilization time is observed for the +20–25 mm slender particles of Indonesian coals when compared to the near-round particles. The maximum average char yields at the end of the devolatilization phase for coal and biomass are about 55–76% and 16% respectively. Char yield in coal particles increases with an increase in particle size, whereas biomass particles show relatively consistent yield across all experimental conditions. Increase in bed temperature reduces the char yields of coal up to 12% and in biomass up to 30%. High volatile Indian coal is the most influenced fuel by the changes in fuels shape. A correlation for determining devolatilization time under CLC environment is presented, and it successfully fits most of the experimental values within ±20% deviation for coals (R2 = 0.95) and within ±15% deviation for biomass (R2 = 0.97).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号