首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An azo dye, 2-methyl-N,N-bis(2-hydroxyethyl)-4-aminoazobenzene (nonionic dye) and its conjugate acid (cationic dye) are simultaneously adsorbed by the cellulose membranes carrying sulfonic acid groups from a slightly acidic aqueous solution. Sorption equilibria of the nonionic and the cationic dye are described in terms of the Henry's partition and the ionic exchange mechanism, respectively, in the latter case, the ion exchange constants obtained for the membrane with sulfonic acid group content (SAG) = 261 meq/kg at 30°C are K = 1.43 × 10?5 and K = 0.542, respectively, where Na, H, and DH refer to sodium, hydrogen, and cationic dye ions. The diffusion coefficients of the nonionic dye (DN) and the cationic dye (DC) in the membranes were estimated from the permeation data of the dyes through the membrane. Both DN and DC decrease with increasing SAG. The ratio DN/DC ranged in 2.2–10, the ratio increases with the SAG.  相似文献   

2.
In this article, we report polypyrrole (PPy)/poly(vinyl sulfonate) (PVS) and PPy/perchlorate (ClO) composite films generated by the electrochemical oxidation of pyrrole on a glassy carbon electrode (GCE) in an aqueous solution. The response of the produced films to an applied potential at 0.7 V was obtained by a cyclic voltammetry study in acetonitrile media. The films were significantly similar in their electrochemical behavior when ClO ions doped during the redox process. We concluded that with an increasing number of cycles, the anodic current increased because the number of the electroactive participants transported in the copolymer matrix was increased. Theoretical studies based on the Nernst and Butler–Volmer equations indicated that the ClO ion was transported during the oxidation/reduction process of the PPY/PVS and PPY/ClO films. The produced films were characterized further by means of IR spectroscopy, electrochemical impedance spectroscopy, and scanning electron microscopy to verify that the anion of ClO was doped into the copolymer matrix as well. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
The viscoelastic properties of a rubber–resin blend, which influences performance of the blend as a pressure-sensitive adhesive, depend upon the structure of the resin as well as its molecular weight. The effect of the concentration of a compatible resin in the blend was examined using a mechanical spectrometer. Four types of resins were used. These are the rosin esters, polyterpenes, pure monomer resins such as polystyrene and poly(vinyl cyclohexane), and petroleum stream resins. Each was examined in blends with both natural rubber and styrene–butadiene rubber over a range of concentrations. It is shown that the temperature of the tan δ peak for compatible systems can be predicted by the Fox equation, T = W1T + W2T, where W1 and W2 are the weight fractions of the resin and rubber, respectively, and the Tg's are the tan δ peak temperatures in K. The plateau modulus G for a blend can be identified as the G′ value in the rubbery plateau at the point where tan δ is at a minimum. The relationship between G and G, the plateau modulus for the undiluted elastomer, is shown to be proportional to the volume fraction of the elastomer raised to the 2.3–2.4 power for natural rubber with six different compatible resins. The exponent for styrene–butadiene rubber is 2.5–2.6 with four different resins. Using these relationships, both the tan δ peak temperature and plateau modulus can be predicted for a rubber–resin system from data on the unmodified elastomer and on one typical rubber–resin blend.  相似文献   

4.
The solution and diffusion properties of cyclohexane, cyclohexanol, and cyclohexanone in poly(ethylene glycol) (PEG) and crosslinked PEG have been studied in the temperature range of 368.15 to 403.15 K using inverse gas chromatography (IGC) technique. The infinite dilute activity coefficient (Ω) and diffusion coefficient (D) have been determined for the above solvent/polymer systems. Accordingly, several thermodynamic functions, the diffusion pre‐exponential factor, and activation energy have been attained. The results showed a decrease in Ω and an increase in D with rising temperature. The order of the relative magnitude of Ω and D of the solvents were explained by comparing their interactions with the polymer and their collision diameters, respectively. Moreover, Ω and D in crosslinked PEG were smaller than those in PEG at various temperatures. The analysis of Ω, the infinite dilute selectivity and capacity showed the possibility of using crosslinked PEG as an appropriate membrane material for the separation of cyclohexane, cyclohexanol, and cyclohexanone mixture. A thermodynamic study also implied that the solvent sorptions in the polymers were all enthalpically driven in the experimental range. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

5.
In wastewater treatment plants (WWTPs) the production of nitrite as an intermediate in the biological nutrient removal (BNR) process has been widely observed, but not been taken into account by most of the conventional activated sludge models yet. This work aims to develop a mechanistic mathematical model to evaluate the BNR process after resolving such a problem. A mathematical model is developed based on the Activated Sludge Model No.3 (ASM3) and the EAWAG Bio‐P model with an incorporation of the two‐step nitrification–denitrification, the anoxic P uptake, and the associated two‐step denitrification by phosphorus accumulating organisms. The database used for simulations originates from a full‐scale BNR municipal wastewater treatment plant. The influent wastewater composition is characterized using batch tests. Model predictions are compared with the measured concentrations of chemical oxygen demand (COD), NH‐N, NO‐N, NO‐N, PO‐P, and mixed liquid volatile suspended solids. Simulation results indicate that the calibrated model is capable of predicting the microbial growth, COD removal, nitrification and denitrification, as well as aerobic and anoxic P removal. Thus, this model can be used to evaluate and simulate full‐scale BNR activated sludge WWTPs. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

6.
The self-step growth polymerization of RAf monomers in homogeneous, continuous flow stirred tank reactors (HCSTRs) is simulated under conditions of periodic feed concentration (with frequency ω and amplitude α). By having periodic operation, the polydispersity index of the polymer is found to increase by about 35% over the values at steady state. Periodic operation of HCSTRs is found to lead to gelation only for certain values of the frequency and the dimensionless residence time τ*. Gelling envelopes have been obtained to give conditions under which HCSTRs should be operated. These envelopes can be described in terms of two critical dimensionless residence times, τ and τ such that nongelling operation is always ensured when τ* < τ. For τ* > τ, periodic operation always leads to gelation, and HCSTRs cannot be used. For τ < τ* < τ, the gelling behavior is found to depend on the functionality f, amplitude α, and the dimensionless residence time τ*.  相似文献   

7.
《分离科学与技术》2012,47(3):582-596
Abstract

Exhausted ground coffee waste has been investigated as metal biosorbent for Cr(VI) from aqueous solution. Maximum metal sorption was found to occur at initial pH 3.0. Kinetic studies revealed that the initial uptake was quite rapid; nevertheless, it took five days to reach equilibrium. The value of the Langmuir maximum uptake was found to be 10.2 mg Cr(VI)/g waste. The sorbent is able to reduce hexavalent chromium to its trivalent form. A solution of 1 M NaOH was the most effective desorption agent and after 24 hours contact 42% of total chromium was desorbed in both hexavalent and trivalent oxidation states.  相似文献   

8.
The cycloterpolymerizations of varying proportions of diallyldimethylammonium chloride (I) and N,N-Diallyl-N-carboethoxymethylammonium chloride (II) in the presence of sulfur dioxide afforded a series of cationic (+) polyelectrolytes (CPEs) (III) in excellent yields. CPEs, upon acidic hydrolysis of the ester functionalities of the repeating units of II, resulted in the formation of cationic/zwitterionic (+/±) polymers (IV). pH-responsive zwitterionic units of ammonioethanoate (NH+CH2CO) (having unquenched valency of nitrogen) in IV was converted to its anionic counterparts (NCH2CO) by treating with equivalent amount of NaOH to give cationic/anionic i.e., ampholytic (+/−) polymers (V) with a charge symmetry or asymmetry arising out of either excess of cationic or anionic centers. The transformations of III to IV to V have thus provided an opportunity to study the effects of the polyelectrolyte-to-polyzwitterion-to-polyampholyte transitions on the solution properties of these polymers. Basicity constants of the carboxylate group (NH+CH2CO) in IV as well as the amine group (NCH2CO) in V were found to be “apparent” and as such follow the modified Henderson–Hasselbalch equation. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
With the help of DTA, DTG elementary analysis of carbonized residues and ESR spectroscopy the influence of anionic form on thermooxidation of trimethylammoniumhydroxyprophyl (TMAHP)–cellulose was studied. At 300°C the percentage of carbon in carbonized residue thermolyzed in oxidative atmosphere is higher than for the sample degraded in inert atmosphere. The percentage of hydrogen decreases simultaneously. The concentration of free radicals in thermolyzed residue also increases due to the presence of oxygen. We propose that oxygen is abstracting the hydrogen atoms from polysaccharide and unpaired electrons on carbon atoms are produced. At 400°C the percentage of carbon in residues prepared at inert atmosphere is higher than for residue formed at oxidative atmosphere. Also the concentration of free radicals in thermolyzed residues obtained in inert atmosphere is greater than for those from oxidative ones. That is why suppose that at this temperature oxygen is bonded to polysaccharide residue and free radicals are terminated. From the semiquantitative DTA we can make the following sequence of samples according to their increasing thermooxidative effect: unmodified cellulose < A–HSO < A–Br? < A–I? < A–NO < A–H2PO < A–CH3COO? < A–HCO < A–F? < A–Cl?1 < A–OHp?.  相似文献   

10.
Some new cellulosic materials, suitable for the adsorption of noble metal ions, were syn-thesized by chemical and electrochemical modification of cellulose. The polymerizable groups were introduced in cellulose with ∼ 80% yield of substitution by esterification with acryloyl chloride. The vinyl monomers (4-vinylpyridine, 1-vinylimidazole, 1-vinyl-2-pyrrolidinone, and 9-vinylcarbazole) were readily grafted into cellulose acrylate via radical polymerization in acetonitrile. The grafted copolymers of cellulose with 4-vinylpyridine and 4-vinylimidazole were reacted with methyl iodide and the corresponding 1-methylpyridinium iodide ( 6 ) and 3-methylimidazolium iodide ( 7 ) copolymers of cellulose were obtained. Copolymers 6 and 7 were transformed into new polymeric regents, differing in anions (ClO, CF3COO, NO, p-TsO, BF, PF) by using a supporting electrolyte carrying the desired anions through the ion-exchange-electrochemical oxidation of the released iodide at a controlled anodic potential. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Iminoamino methylene base intermediates obtained by the decomposition of hexamethylenetetramine (hexamine) stabilized by the presence of strong anions such as SO and HSO, or hexamine sulfate, were shown to markedly improve the water and weather resistance of hardened melamine–urea–formaldehyde (MUF) resins used as wood adhesives and of the wet internal bond strength performance of wood boards bonded with them. The effect was shown to be induced by very small amounts, between 1 and 5 wt % of this material on resin solid content. This strong effect allowed the use of MUF resins of much lower melamine content and also provided good performance of the bonded joints. Because the main effect was also present at the smaller proportion of hexamine as hexamine sulfate, it was not due at all to any increase in the molar ratio of the resin as a consequence of hexamine sulfate addition. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 203–214, 2003  相似文献   

12.
Dynamic adsorption behaviors between Cr(VI) ion and water‐insoluble amphoteric starches was investigated. It was found that the HCrO ion predominates over the initial pH ∼ 2–4, the CrO ion predominates over the initial pH ∼ 10–12, and both ions coexist over the initial pH ∼ 6–8. The sorption process occurs in two stages: the external mass transport process occurs in the early stage and the intraparticle diffusion process occurs in the long‐term stage. The diffusion coefficient of the early stage (D1) is larger than that of the long‐term stage (D2) for the initial pH 4 and pH 10. The diffusion rate of HCrO ion is faster than that of CrO ion for both processes. The D1 and D2 values are ∼ 1.38 × 10−7–10.1 × 10−7 and ∼ 0.41 × 10−7–1.60 × 10−7 cm2 s−1, respectively. The ion diffusion rate in both processes is concentration dependent and decreases with increasing initial concentration. The diffusion rate of HCrO ion is more concentration dependent than that of CrO ion for the external mass transport process. In the intraparticle diffusion process, the concentration dependence of the diffusion rate of HCrO and CrO ions is about the same. The external mass transport and intraparticle diffusion processes are endothermic and exothermic, respectively, for the initial pH 4 and pH 10. The kd values of the external mass transport and intraparticle diffusion processes are ∼ 15.20–30.45 and ∼ −3.53 to −12.67 kJ mol−1, respectively. The diffusion rate of HCrO ion is more temperature dependent than that of CrO ion for both processes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2409–2418, 1999  相似文献   

13.
14.
The Simplified Split Cantilever Beam (SSCB) is proposed in this work and compared with the Split Cantilever Beam (SCB) to obtain the tearing mode interlaminar fracture toughness. The materials considered are single‐fiber system composites and interply hybrid composites. For interply hybrid composites, three different types of stacking sequence for SSCB specimens, which are [0/0//0],[0/0//0]. and [0/0//0], are tested to compare their suitability. Finite element analysis combined with a modified crack closure integral has been applied to separate the different components of the strain‐energy release rate. In addition, the method of compliance calibration was used to calculate Gc values. The effects of crack growth, initial crack length, specimen width, and number of glass fiber plies were also studied. The results show that SSCB testing has a more dominant Mode III component and more stable Gc values than SCB testing. For SSCB testing, the crack growth and the specimen width for the range considered have no clear effects on the interlaminar fracture toughness, but the initial crack length should be carefully selected to obtain corrected values. The tearing mode interlaminar fracture toughness of interply hybrid composites is higher than that of carbon/epoxy composites, and the three different types of stacking sequence considered are all suitable to approximate the Mode III interlaminar fracture toughness for interply hybrid composites.  相似文献   

15.
Different values are reported in the literature for the intrinsic birefringence of the crystalline (Δn) and the amorphous (Δn) phases in nylon 6. Mostly, these values have either been determined by extrapolation (and then it is assumed that Δn = Δn) or calculated theoretically. In this study, intrinsic birefringence values Δn and Δn for nylon 6 were determined using the Samuels two-phase model which correlates sonic modulus with structural parameters. Three series of fiber samples were used: (1) isotropic samples of different degrees of crystallinity for estimation of E and E moduli at two temperatures. The following modulus values were obtained: 1.62 × 109 and 6.66 × 109 N/m2 for 28.5°C, and 1.81 × 109 and 6.71 × 109 N/m2 for ?20°C; (2) anisotropic, amorphous fiber samples for estimation of Δn = 0.076 and E = 1.63 × 109 N/m2 at 28.5°C; (3) semicrystalline samples of various draw ratios for estimations of Δn = 0.089 and Δn = 0.078. All measurements were carried out with carefully dried samples to avoid erroneous results caused by moisture.  相似文献   

16.
This article presents the liquid–solid mass transfer characteristics for cocurrent upflow operated gas–liquid solid foam packings. Aluminum foam was used with 10, 20, and 40 pores per linear inch (PPI), coated with 5 wt % Pd on γ‐alumina. The effects of gas velocity (ug = 0.1?0.8 m m s?1) and liquid velocity (ul = 0.02 and 0.04 m m s?1) are studied using the Pd/Bi catalyzed oxidation of glucose. The volumetric liquid–solid mass transfer coefficient, klsals, is approximately the same for 10 PPI and 20 PPI solid foams, ranging from 2 × 10?2 to 9 × 10?2 m m s?1. For 40 PPI solid foam, somewhat lower values for klsals were found, ranging from 6 × 10?3 to 4 × 10?2 m m s?1. The intrinsic liquid–solid mass transfer coefficient, kls, increases with increasing liquid velocity and was found to be proportional to u. Initially, kls decreases with increasing gas velocity and after reaching a minimum value increases with increasing gas velocity. The values for kls range from 5.5 × 10?6 to 8 × 10?4 m m s?1, which is in the same range as found for random packings and corrugated sheet packings. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

17.
Photochemical Primary Processes of Xanthene Dyes. III. Investigations of the Influence of Cationic Micelles on the Photoredox Processes of Selenopyronine by Flash Excitation Cationic micelles have no influence on the decay of the triplet state of selenopyronine (3F+). The products of photoredox reactions 3F+ + 3F+ (F+) → F· + F and 3F+ + DABCO → F· + DABCO live longer in the presence of the cationic micelles. The reason for the change of the lifetime is a separation of the photoredox products by micelles. F. is stored in the interior of the micelles. The positively charged F and DABCO are repelled from the micelles and the electron back transfer is hindered.  相似文献   

18.
It was found that the cationic ring-opening polymerization of δ-valerolactone (VL), ε-caprolactone (CL), and β-propiolactone (PL) was initiated by carbon black containing CO+ClO groups, which were introduced by the reaction of COCl groups with AgClO4. The polyester was propagated from CO+ClO groups and effectively grafted onto carbon black surface. The polymerizability of these lactones by CO+ClO groups decreased in the following order: VL > CL > PL. The increasing temperature of the polymerization caused an increase in the rate of the chain transfer reaction of the growing chains and brought about the decrease of grafting ratio of polyester onto carbon black.  相似文献   

19.
The thermal stability of the heterogeneous nucleation effect of polypropylene (PP) nucleated with an organic phosphate (A) and two kinds of sorbitol derivatives (B and D) was investigated by DSC multiscanning. For pure PP, the peak temperature of crystallization (T) was little changed with an increasing number of DSC scans, indicating that nucleation of PP is thermally stable. For the PP nucleated with an organic phosphate (PPA), the temperatures at the onset of crystallization (T) and at the completion of crystallization (T); the peak temperature of crystallization (T) and melting (T); and the heat of crystallization (ΔHc) and fusion (ΔHm) of PP are higher than those of pure PP and were little influenced with an increasing number of DSC scans. For PP nucleated with the sorbitol derivatives (PPB and PPD), the T, T, T, and T decreased with an increasing the number of scans. These results indicated that the thermal stability of heterogeneous nucleation effect of the nucleating agent A is higher than that of nucleating agents B and D. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1643–1650, 2002  相似文献   

20.
Neutral organophosphorus compounds containing a phosphoryl or thiophosphoryl group were found to cause appreciable synergistic shifts in the pH50 values for the extraction of the trivalent lanthanides and yttrium from chloride media by solutions of 3,5-diisopropylsalicylic acid (DIPSA) in xylene. For the series of compounds with R = n-butyl, the synergistic effect increases in the order (RO)3PS < (RO)3PO < (RO)2RPO < (RO)R2PO < R3PO. The synergistic effects are greater for lutetium(III) than for lanthanum(III) and, as a result, the separation across the lanthanide series (pH–pH) increases from only 0·17 pH unit for 0·25 M DIPSA alone to, for example, 0·85 pH unit for a mixture of 0·25 M DIPSA and 0·25 M triisobutylphosphine oxide (TIBPO). Mixtures of DIPSA and TIBPO give somewhat better separation factors between the light and middle lanthanide fractions (β = 3·0) than the commercial Versatic 10 acid (β = 2·6), and separation factors comparable to those of the latter extractant between the heaviest lanthanides (thulium to lutetium).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号