首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
在电压濒临失稳时,静止无功补偿器(SVC)可能因为输出无功功率不够快而无法阻止电压失稳,针对这种情况,提出了一种SVC预防电压失稳的快速控制方法。该方法以电压失稳预测(VIP)指标数值越限为启动条件,通过调整SVC电压参考值提升其无功输出速度,从而预防电压失稳。使用PSCAD/EMTDC和MATLAB的联合仿真进行算例分析,验证了此控制方法提升电压稳定性的有效性。该方法简单可靠,且仅调节SVC控制系统外部数据,不改变SVC原有的系统结构和参数,适用于实际系统,有很好的发展前景。  相似文献   

2.
SVC控制引起的电压振荡失稳研究   总被引:7,自引:0,他引:7  
顾伟  蒋平  唐国庆 《中国电力》2005,38(8):19-23
在发生电压崩溃的单机-动态负荷系统中,采用传统SVC控制器(静止无功补偿器)提高其电压稳定性:研究表明SVC控制可以延迟系统鞍结分岔点,大大提高系统电压稳定性。但新状态变量的引入改变了系统特性,使得系统在发生鞍结分岔之前,先经历一个Hopf分岔。时域仿真表明,此Hopf分岔诱导系统发生振荡型电压失稳,系统的负荷极限由Hopf分岔参数决定。因此,在使用FACTS控制器提高系统电压稳定性时,要详细考虑其对系统中各种分岔的影响,综合优化控制器的设计和安装。  相似文献   

3.
提出了SVC控制的一种新策略,包括两阶段的斜率控制和两种电压控制,分别是稳态电压控制和浮动电压控制。实行这两种控制的目的是通过与有载调压器的配合,在稳态情况下,减少SVC的无功功率输出,从上级网络获得无功进行补偿。当电压偏离稳态电压时,SVC使用无功备用进行迅速反应,以保证电压稳定。当电压波动达到一个新的稳定工作点时,浮动电压控制通过改变SVC输出,使其返回到稳定电压运行区域,从而达到了稳定电压和保证电能质量的目的。  相似文献   

4.
应用分岔理论分析SVC对电力系统电压稳定性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于分岔理论的电力系统电压稳定分析对于深入理解电压失稳机理有重要意义,特别是对于灵活交流输电系统,如静止无功补偿器等,分岔理论能够有效分析系统的动态控制特性对电压稳定的影响。利用非线性动力系统的分岔理论,使用通用分岔分析软件AUTO2000对典型的含SVC系统和不含SVC系统进行电压稳定的分析,得出了系统在两种情况下的分岔点数值。研究发现,通过添加静止无功补偿器(SVC),可以延迟系统的Hopf分岔点和鞍结分岔点,增加负荷极限,从而提高了系统电压稳定性。之后又通过双参数分岔分析确定了两维分岔边界。结果表明,在使用SVC控制器提高系统电压稳定性时,要详细考虑其参数对系统中各种分岔的影响,综合优化控制器的设计和安装。  相似文献   

5.
SVC和TCSC提高电压稳定性作用的动态分析   总被引:14,自引:0,他引:14  
利用小扰动分析法和非线性动态方法中的分岔等概念对SVC和TCSC提高电压稳定性的作用进行了全面的分析。研究了由SVC和动态负荷相互作用引起的Hopf分岔现象,并对SVC和TCSC时间常数的选择进行了讨论。分析表明,在简单系统中,TCSC比SVC更能有效地提高系统的电压稳定性;TCSC时间常数的变化比SVC时间常数的变化对电压稳定功率极限影响小;装设SVC和TCSC后可以显示地增大系统的电压稳定功率极限。在考虑SVC或TCSC动态的情况下PV曲线鼻尖点并不一定是系统失稳点。  相似文献   

6.
为研究风电系统参数连续变化对其电压稳定性的影响.应用Hopf分岔理论,以风电场有功功率和无功功率为分岔参数,通过延拓法求解单参数Hopf分岔点和两参数Hopf分岔边界,研究了分岔参数对Hopf分岔的影响,并分析了静止无功补偿器(SVC)对Hopf分岔的控制作用.研究表明,风电场的无功消耗会限制有功功率的输出,SVC可以...  相似文献   

7.
研究了基于矢量控制的电压源变换器(VSC)接入电网的小扰动稳定问题。基于VSC接入无穷大系统的详细模型,针对不同控制模式,分别对平衡点的存在性、稳定性进行了分析,系统地总结了VSC小扰动失稳的不同机理。系统中发生鞍结点分岔会导致平衡点消失而失稳,且存在以下几种机理:输出电流过大会导致锁相环(PLL)失去平衡点,对应PLL失去同步,单独的PLL失去同步可能发生在切除外环控制、采用内环定电流控制的情况下;输出有功过大会导致功率外环失去平衡点,当无功外环采用定无功功率、定交流电压控制时,分别对应电网的静态电压、功角失稳,而且失稳后电流增大一般也会引发PLL失去同步。在平衡点存在的情况下,系统振荡模式中包含低频振荡模式和次同步振荡模式,系统也可能发生Hopf分岔而出现振荡失稳。低频振荡模式主要由外环控制主导,次同步振荡模式则由PLL、电流环和线路动态主导。平衡点的存在性不受VSC控制参数的影响,只受网络参数、VSC工况的影响,而平衡点的稳定性和VSC控制参数有关。  相似文献   

8.
ABSTRACT

Three distinct types of algebraic bifurcations are shown to occur in both a load flow model and in a transient midterm stability model. Angle bifurcation results in significant angle change and no voltage change at the point of bifurcation. Voltage bifurcation results in significant voltage change and no angle change at the bifurcation point. Voltage and angle bifurcation result in both voltage and angle change at the bifurcation point. Angle bifurcation occurs due to reaching the real power transfer capability across some interface or boundary of the network. Voltage bifurcation is due to inability to transfer needed reactive power to a bus or area across a boundary due to insufficient voltage control and thus reactive supply capability in the region. Voltage and angle bifurcation results when reactive power can' be transferred to a bus or area across a boundary due to insufficient reactive supply and excessive reactive losses (I2X and shunt capacitive reactive withdrawal due to voltage drop) caused by real power transfer. Unique tests for the three types of load flow bifurcation are given. All the load flow voltage instability proximity measures are then classified in terms of which of these three types of load flow bifurcations they test for at the points of collapse. PQ controllability tests are shown to test for voltage, bifurcation and voltage and angle bifurcation. Any proximity test of reactive power versus voltage relationships also tests for voltage bifurcation and voltage and angle bifurcation. Proximity to all three types of load flow bifurcation are measured by either (a) tests of the singularity of the load flow jacobian or (b) proximity measures that test real power transfer or loading effects on voltage. Since equivalent voltage, angle, and voltage and angle bifurcations occur in a transient stability model, the load flow proximity measure tests can be applied on a transient stability model. This paper, thus, classifies and unifies the various proximity measure tests and point of collapse tests for voltage instability on both a load flow and transient stability model.  相似文献   

9.
针对SVC和STATCOM这两种无功补偿装置,利用基于Matlab的软件包MATCONT和PSAT分析SVC和STATCOM对电力系统电压稳定性的影响。通过实例仿真验证这两种装置对提高电压稳定性的有效性,同时指出同容量的STATCOM比SVC更有效。  相似文献   

10.
系统的电压稳定裕度由亚临界霍普夫分岔值表征,如何延迟甚至消除霍普夫分岔,提高稳定裕度,对于防止系统电压失稳具有重要意义。根据一种新的霍普夫分岔指标建立了电压稳定霍普夫分岔控制的最优化模型。该模型考虑了更为切合实际的约束条件,包括系统阻尼限制、PV节点无功出力限制、励磁电压限制以及各节点电压限制等。为有效求解该优化模型,提出了一种2阶段家族保护遗传算法。算法利用混沌变量的遍历性生成初始种群,第1阶段完成家族内部的选择,使得每个家族成员都是优良个体;第2阶段实现家族间的选择,这是一种优–优选择,使算法能以更快的速度收敛到全局最优解。通过对测试函数和WSCC-9节点系统的仿真表明该模型和算法的有效性和可行性。  相似文献   

11.
Chaos and voltage collapse exist in power systems due to critical loading and disturbing of energy (DE). These phenomena cause instability in power system operation and must be avoided. In this paper, an ANFIS-based composite controller-static var compensator (CC-SVC) was proposed to control both chaotic oscillations and voltage collapse. The ANFIS-based CC-SVC was proposed because its computation was more efficient than Mamdani fuzzy logic controller. Adaptive network parameters were obtained through a training process. The controller parameters were automatically updated by off-line training. Both chaos and voltage collapse were able to control and suppress effectively by the proposed method. Furthermore, the load voltage was held to a set value by adjusting the supplied reactive power. When the reactive load was increased, the SVC susceptance and reactive power supplied by the SVC also increased. The proposed method was able to maintain the load voltage and to increase the loading margin.  相似文献   

12.
基于多参数分岔分析方法的多机系统动态负荷裕度研究   总被引:4,自引:0,他引:4  
采用多参数分岔分析方法对多机系统的动态负荷裕度进行研究,比较了基于连续潮流的分析结果和准静态分析结果的差别;以励磁参考电压Vref为控制参数,研究了多个励磁参考电压可控时系统的分岔点以及失稳模式的变化,给出系统在多励磁调节器(AVR)可控时的最大动态负荷裕度;以静止无功补偿器(SVC)补偿极限B0_max和控制电压参考值Vrefc为可控参变量,分别研究其对系统各种分岔的影响,并着重分析了对Hopf分岔的影响;研究了SVC附加控制对系统阻尼和动态负荷裕度的影响.所有仿真均在WSCC 3机9节点系统实现.  相似文献   

13.
500 kV桂林变电站直流融冰兼静态无功功率补偿装置(SVC)运行于补偿模式时相控电抗器(TCR)长期处于吸收容性无功功率状态,阀组长期大电流运行,损耗较大。分析SVC的理论线损的组成,包括TCR支路损耗、换流变压器损耗以及滤波电容器支路损耗。构建了桂林站SVC基于PSCAD/EMTDC的暂态仿真模型,分析研究了SVC在恒压控制模式下的损耗情况。仿真结果表明晶闸管阀与换流变压器损耗是构成SVC损耗的主要成分。  相似文献   

14.
静止无功补偿器用于抑制厂用电系统电压波动仿真   总被引:12,自引:4,他引:8  
厂用电系统中一般带有集中电动机负荷,异步电动机启动会引起母线电压严重的波动。系统装设静止无功补偿器(SVC)是有效解决电压质量问题的方法之一。文中采用配有自动电压调节器(AVR)的发电机励磁与系统母线装设SVC的方法,SVC采用闭环控制,研究其对电压稳定和无功补偿的效果。通过对某电厂厂用电系统的仿真计算表明,该方法可提高厂用电电压的水平,并且缩小了异步电动机的启动时间,减少了大型异步电动机启动对系统母线电压的波动和无功功率的冲击。  相似文献   

15.
应用分叉理论研究负荷特性对电力系统电压稳定性的影响   总被引:7,自引:2,他引:7  
本文应用分叉理论研究系统临界点的行为,在给出两个引理的基础上,证明了参数大范围变化时系统电压发生失稳分叉的判别定理,从理论上分析了几种典型负荷静特性对电压稳定性的影响,同时也提出了一些新观点。  相似文献   

16.
运用延拓法追踪以双馈感应风电机(washowt filter DFIG)为代表的风电系统的平衡解流形,并基于分岔理论,分析平衡解流形的分岔点。提出了一种基于高通滤波器(washout filter)技术的SVC模型,对风电系统发生的霍普夫(Hopf)分岔进行分岔控制,改变与系统分岔相关的雅可比矩阵特征值,不但消除了Hopf分岔点,还提高了电压幅值,扩大了电压稳定裕度。仿真结果和时域仿真验证了所提出的方法是正确可行的。  相似文献   

17.
用延拓法对双馈机风电场和异步机风电场分别进行单参数和双参数分岔分析,推导了含有风电场及静止无功补偿器(SVC)情况下的系统潮流计算公式,并设计了追踪二维分岔曲线的方法,用时域仿真法对分岔分析的结果进行验证。通过在不同的风机模型及参数下进行时域仿真得到SVC影响系统分叉点的位置及电压失稳过程,结果表明时间常数越大,系统电压失稳的速度越快;在动态的异步机风电场模型下,等值机的惯性时间常数也影响系统的电压失稳过程,其时间常数越小,电压失稳的速度越快;在双馈机风电场模型下,功率因数不同,系统的传输极限及分岔值不同。  相似文献   

18.
一种典型电力系统模型的电压稳定分岔分析   总被引:10,自引:2,他引:8  
基于Walve综合负荷模型,采用非线性动力学理论中的分岔分析方法,对一种典型电力系统模型进行了电压失稳机理研究。研究结果表明该系统有4种引起电压失稳的方式:鞍结分岔导致电压单调失稳, Hopf分岔导致电压周期振荡或低频振荡失稳,倍周期分岔走向混沌引起电压失稳,吸引子共存、状态扰动改变运行状态导致电压失稳。研究结果还表明相邻母线的负荷相互作用将对电压稳定的定性定量性质产生影响;保证电压稳定的控制措施应首先考虑较低电压等级母线负荷的调整,条件许可时限制本地发电机的出力也不失为一种避免电压振荡失稳的方法。  相似文献   

19.
基于DFIG与SVC的风电场无功电压协调控制策略   总被引:1,自引:0,他引:1  
针对风电场的无功电压问题,构建了风电场模型,提出了一种综合考虑双馈风电机组(doubly-fed induction generator,DFIG)和静止无功补偿器(static var compensator,SVC)的无功电压协调控制策略。建立了综合考虑风电场公共接入点(point of common coupling,PCC)的电压偏移量和无功源的无功裕度的目标函数。基于混沌量子粒子群算法对风电场进行无功电压控制,通过协调DFIG和SVC的无功出力,使得风电场PCC的电压满足要求,同时提高其无功源的无功裕度。最后,以华北某风电场为例进行算例分析,验证了所提无功电压协调控制策略的可行性及有效性。  相似文献   

20.
覃晔  尹惠  邓明  徐志 《电力学报》2014,(6):515-520
为解决矿热炉给电网中其他用户带来的电能质量问题,尤其是电压跌落和电压闪变,提出了一种由FC、SVC和STATCOM组成的混合无功补偿系统。其中FC负责低层低成本无功补偿;SVC负责跟踪补偿无功功率变化,改善三相不平衡;STATCOM则通过快速响应来补偿SVC由于响应速度慢而导致的补偿误差,从而提高整个混合补偿系统的补偿精度。三者通过系统规则判断进行协调控制。对混合无功补偿系统进行仿真试验,分析对比了系统投入前后的电压波形,证明其补偿效果等效于等容量的STATCOM。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号