首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two series of unsaturated polyesters (UPE from isophthalic acid, fumaric acid, and propylene glycol) were prepared. In series-A resins, UPEs wee thickened with isocyanate-terminated saturated aliphatic polyestes, i.e., an isocyanate-terminated polycaprolactone diol (PE-di-OL), through reaction of the isocyanate group with the hydroxyl group of the UPE. In series-B resins, the UPEs were mixed with saturated aliphatic polyesters i.e., PE-di-OL. The curing reaction of these two series of UPEs with styrene was studied by using differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). The DSC data show that for a fixed PE-di-OL molecular weight, the curing reaction rate of series-A UPE is faster than that of series-B UPE. The variation of microgel size during curing ws studied by GPC. These results revealed that microgel formation has a great effect on the kinetics of cure for the unsaturated polyester-styrene system. The curing of these two series of UPEs is found to strongly depend on the compatibility of the components in the curing system.  相似文献   

2.
The effects of two low-profile additives (LPA), poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) on the curing kinetics during the cure of unsaturated polyester (UP) resins at 110°C were investigated by using a differential scanning calorimeter (DSC) and a Fourier transform infrared spectrometer (FTIR). The effects of temperature, molar ratio of styrene to polyester CC bonds, and LPA content on phase characteristics of the static ternary systems of styrene–UP–PVAc and styrene–UP–PMMA prior to reaction were presented. Depending on the molar ratio of styrene to polyester CC bonds, a small shoulder or a kinetic-controlled plateau in the initial portion of the DSC rate profile was observed for the LPA-containing sample. This was due to the facilitation of intramicrogel crosslinking reactions since LPA could enhance phase separation and thus favor the formation of clearly identified microgel particles. FTIR results showed that adding LPA could enhance the relative conversion of polyester CC bonds to styrene throughout the reaction. Finally, by use of a microgel-based kinetic model and static phase characteristics of styrene–UP–LPA systems at 25°C, the effects of LPA on reaction kinetics regarding intramicrogel and intermicrogel crosslinking reactions, relative conversion of styrene to polyester CC bonds, and the final conversio have been explained. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The effects of two low-profile additives (LPA), poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA), on the morphological changes during the cure of unsaturated polyester (UP) resins at 110°C were investigated by an approach of integrated reaction kinetics-morphology-phase separation measurements by using a differential scanning calorimeter (DSC), scanning electron microscopy (SEM), optical microscopy (OM), and a low-angle laser light-scattering appartus (LALLS). For the UP resins cured at 110°C, adding LPA could facilitate the phase separation between LPA and crosslinked UP phases early in the reaction, and discrete microgel particles were thus allowed to be identified throughout the reaction. Microvoids and microcracks responsible for the volume shrinkage control could also be observed evidently at the later stage of reaction under SEM. Depending on the types of LPA and the initial molar ratios of styrene to polyester C?C bonds, the morphological changes during the cure varied considerably. The progress of microstructure formation during reaction has been presented. Static ternary phase characteristics for the styrene–UP–LPA system at 25°C have also been employed to elucidate the resulting morphology during the cure in both the continuous and the dispersed phases. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The effects of comonomer composition on the curing kinetics of unsaturated polyester (UP) resins at 70–90°C were studied by differential scanning calorimetry (DSC) and infrared (IR) spectroscopy over the whole conversion range. One commercial UP resin, UP2660PF2, with cobalt promoter added and with 8.85 unsaturated C?C bonds per polyester molecule, was used. It was found that a marked shoulder in the initial DSC rate profile, rather than that reported after the peak of rate profile for low-temperature and high-temperature reactions, appeared when the molar ratio of styrene to polyester C?C bonds was greater than 1. With the initiator system accelerated by cobalt promoter, the formation rate of microgel particles would be enhanced at the early stage of reaction, as supported by the much higher conversion of polyester C?C bonds than that of styrene by IR spectroscopy. Those relatively greater number of microgel particles tended to facilitate the intramicrogel crosslinking reactions, which would be independently identified from the initial DSC rate profile as a shoulder. Consequently, the reaction mechanism was elucidated by decomposing the reaction rate profile into two individual profiles accounting for the intramicrogel dominated and the intermicrogel dominated crosslinking reactions, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Interpenetrating polymer networks (IPNs) based on a polyurethane (PU) and two unsaturated polyester (UPE) resins (a commercially available UPE and a partially endcapped UPE) were prepared. The mechanical properties, such as tensile strength, elongation at break, impact strength, and dynamic mechnical properties of IPNs, were studied by changing reaction temperature, PU reaction rate, and UPE reaction rate. Owing to the unique microgel formaton of UPE, the first formed network tends t be the dispersed phase in the PU-UPE IPN system. The reaction sequence was found to be an important factor in determining the phase mixing and phase morphology of the IPNs. When the PU reaction was faster, extensive phase mixing due to strong grafting or chain interpenetration was obtained. When the UPE reacted first, grafting was retarded by the microgel formation of the UPE network. It was found that simultaneous reaction of the two reacting system resulted in a co-continuous structure that provided enhanced tensile properties and impact strength.  相似文献   

6.
The effects of reactive poly(methyl methacrylate) (PMMA) and poly(vinyl acetate)‐block‐PMMA as low‐profile additives (LPAs) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing at 110°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerization with polymeric peroxides as initiators. Depending on the LPA composition and molecular weight, the reactive LPAs led to a considerable volume reduction or even to a volume expansion after the curing of styrene (ST)/UP/LPA ternary systems; this was attributed mainly to the expansion effects of the LPAs on the ST‐crosslinked polyester microgel structures caused by the reduction in the cyclization reaction of the UP resin during curing as well as to the repulsive forces between the chain segments of UP and LPAs within the microgel structures. The experimental results were explained by an integrated approach of measurements for the static phase characteristics of the ST/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation with differential scanning calorimetry, scanning electron microscopy, optical microscopy, and image analysis. With the aid of the Takayanagi mechanical model, the factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts were also explored. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 264–275, 2005  相似文献   

7.
A series of unsaturated polyesters were synthesized with various chemical structures and molecular weights. These unsaturated polyesters were used to study the curing reaction with styrene by using gel permeation chromatography and differential scanning calorimetry. The variation of the size of microgel particles during the curing reaction in unsaturated polyester–styrene resins was studied by using gel permeation chromatography. The size and structure of the microgels depend strongly on the polymer chain length and the number of vinyl groups on each unsaturated polyester chain. Using the differential scanning calorimetric method, the conversion of styrene and polyester vinyl groups during the reaction was measured. The experimental results of this study revealed that microgel formation has a great effect on the curing reaction of unsaturated polyester resins. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride), with different chemical structures and MWs on the miscibility, cured‐sample morphology, curing kinetics, and glass‐transition temperatures for styrene (ST)/unsaturated polyester (UP) resin/LPA ternary systems were investigated by group contribution methods, scanning electron microscopy, differential scanning calorimetry (DSC), and dynamic mechanical analysis, respectively. Before curing at room temperature, the degree of phase separation for the ST/UP/LPA systems was generally explainable by the calculated polarity difference per unit volume between the UP resin and LPA. During curing at 110°C, the compatibility of the ST/UP/LPA systems, as revealed by cured‐sample morphology, was judged from the relative magnitude of the DSC peak reaction rate and the broadness of the peak. On the basis of Takayanagi's mechanical models, the effects of LPA on the final cure conversion and the glass‐transition temperature in the major continuous phase of ST‐crosslinked polyester for the ST/UP/LPA systems was also examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3369–3387, 2004  相似文献   

9.
The partially cured unsaturated polyester (UPE)/styrene resins with various degrees of conversion lower than gel conversion blended with PVAc and 2‐fluorotoluene solvent were investigated using both static and dynamic light scattering (SLS and DLS). The solvent (i.e., 2‐fluorotoluene) is isorefractive with PVAc; thus, one sees only primary and partially cured UPEs in light‐scattering experiments. DLS was used to follow the variations of primary UPE and UPE microgel particle sizes, and SLS was used to follow the variations of UPE molecular weight, second virial coefficient (A2), anisosymmetry (ρv), and differential index refraction (dn/dC) with degree of UPE conversion and PVAc concentration. The experimental data showed that, at a fixed degree of UPE/styrene conversion, increasing PVAc concentration in the UPE/styrene system caused decreases in dn/dC, A2, ρv, and particle sizes of UPE microgels. These results suggest that mixing PVAc into UPE/styrene resins causes an increase in the compactness of UPE coils and favors intramolecular UPE/styrene cyclization in the early stage of curing. Thus A2, ρv, and particle sizes of microgels decreased with increasing PVAc concentration. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1439–1449, 2001  相似文献   

10.
The effects of pressure ranging from 0.1 to 6.21 MPa (0–900 psig) on the curing of unsaturated polyester resins at 110°c were investigated by an approach of integrated reaction kinetics-rheology-morphology measurements using a pressure differential scanning calorimeter (DSC), an infrared spectrophotometer (IR), a Haake rheometer, and by using scanning electron microscopy (SEM). Increasing pressure was found to delay the gel effect, and a previously unknown plateau of kinetic-controlled region in the initial portion of the DSC rate profile was observed. The plateau region was mainly attributed to the crosslinking of C ? C double bonds inside the microgel particles, as revealed by the conversions of styrene and polyester C ? C bonds measured by IR, gel conversion data and SEM micrographs. The mechanisms of reaction kinetics both at atmospheric pressure and under pressures have also been elucidated by the progress of buildup of microgel structures.  相似文献   

11.
The microgelation phenomenon during the curing of unsaturated polyester resin was investigated by both static and dynamic light scattering before gelation. The results of static light scattering revealed that the polymer molecular weight increased with degree of curing. The second virial coefficient, A2, decreased slowly in the initial stage of curing and decreased dramatically at a conversion around α ∼ 8.7%, indicating a drastic decrease of compatibility between the polyesters and styrene. Two modes of the size distribution of the microgel particles during curing were observed by dynamic light scattering. The small particles consist of primary unsaturated polyester molecules. The large ones consist of microgel particles formed by linking adjacent polyester molecules. The sizes of the microgel particles increased in the initial stage of curing, then decreased slightly at a conversion of α ∼ 8.7%, which was due to the intramolecular crosslink reaction of the microgel particles. The experimental results revealed that the compatibility between polyesters and the styrene monomer became worse as the intramolecular crosslinking reaction inside the microgel particles caused a tight packing of the micro-gel molecules. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 871–878, 1998  相似文献   

12.
The effects of comonomer composition of the curing kinetics of unsaturated polyester (UP) resins at 100–120°C were investigated by differential scanning calorimetry (DSC) and infrared spectroscopy (IR) over the entire conversion range. One commercial UP resin, UP2821, with 6.82 unsaturated C?C bonds per polyester molecule, was used. For styrene/UP2821 reactions, experimental results of the initial and maximum reaction rates by DSC at 100–120°C revealed that the styrene content, as well as the reaction temperature, would affect the formation of microgel structures. As the initial molar ratio of styrene to polyester C?C bonds increased, the styrene swelling effect could enhance the intramicrogel crosslinking reactions, while the styrene dilution effect could diminish the intermicrogel crosslinking reactions. The competition between the two reactions would depend on the reaction temperatures. Finally, a microgel-based reaction mechanism was proposed for the high temperature reactions. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The behavior of phase separation during the curing reaction of unsaturated polyester (UPE) resin in the presence of low profile additive, that is, poly(vinyl acetate) (PVAc), was studied by low-angle laser light scattering (LALS) and scanning electron microscopy (SEM). The experimental results revealed that the PVAc-rich phase was regularly dispersed in the cured styrene–UPE matrix for styrene–UPE resin blended with 5 wt % of PVAc. As the PVAc content was increased higher than 10 wt %, a cocontinuous PVAc and cured styrene–UPE phase was observed for the cured systems. The LALS observations were carried out in situ at a curing temperature of 100°C; thus, the effect of the rate of exothermic heat released from curing reaction on the morphology of curing system was investigated and reported in this work. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2413–2428, 1999  相似文献   

14.
The curing of styrene-unsaturated polyester (UP) resins was studied until gelation. The viscosity and gel points were measured during curing and were correlated with curing temperature, initiator concentration, and accelerator concentration. A gelation model concerning the formation of intra-crosslinked polymer coils, called microgels, was proposed. The model describes the gelation mechanism in four stages: induction, microgel formation, transition, and macro-gelation. The kinetic and gelation parameters of the model were experimentally obtained. The gel points and viscosities in the pre-gel state were simulated by the gelation model for isothermal and nonisothermal curings. Comparisons of the simulation results with experimental data showed good agreement.  相似文献   

15.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride) with different chemical structures and MWs on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing were investigated by an integrated approach of static phase characteristics of the ternary styrene (ST)/UP/LPA system, reaction kinetics, cured‐sample morphology, microvoid formation, and property measurements. The relative volume fraction of microvoids generated during the cure was controlled by the stiffness of the UP resin used, the compatibility of the uncured ST/UP/LPA systems, and the glass‐transition temperature of the LPAs used. On the basis of the Takayanagi mechanical model, the LPA mechanism on volume shrinkage control, which accounted for phase separation and microvoid formation, and factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts are discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3388–3397, 2004  相似文献   

16.
The effects of molecular weight and molecular structure of styrene(St)‐based and vinyl acetate(VAc)‐based low‐profile additive (LPA) on the curing kinetics and compatibility of unsaturated polyester (UP)/LPA system and linear shrinkage, water absorption rate, surface gloss and pigmentability of bulk molding compound (BMC) were investigated. Results show that the curing reaction rate decreases with an increase of the molecular weight of LPA due to the chain entanglement effect. The plasticizing effect of LPA on the (UP) network was reduced with an increase of the molecular weight of LPA. Water absorption of BMC increases as the molecular weight of LPA increases, implying that more microvoids were formed inside the BMC, resulting a lower linear shrinkage rate, and worse pigmentability. However, good shrinkage control LPA does not necessarily lead to a smoother surface and better surface gloss. Furthermore, modified LPAs possess better compatibility with UP, the final curing conversion of UP is elevated, and both better shrinkage control and surface properties are also observed.  相似文献   

17.
A high pressure differential scanning calorimeter (DSC) and a Fourier transform infrared (FTIR) spectrometer with a prism liquid cell (PLC) were used to monitor the reaction kinetics of styrene-unsaturated polyester resins at elevated curing temperatures and pressures. The thermal method is easy to perform but provides only an overall reaction exotherm. The spectroscopic method can detect the detailed reaction mechanism of copolymerizations. It is, however, less quantitative and the calculation is much more time-consuming compared to the thermal analysis. Reactions of two unsaturated polyester resins with different molecular structure were measured by these two methods. Results showed that applying cure pressure on unsaturated polyester resins reduced the reaction rate but increased the final conversion. The styrene reaction was enhanced more than the polyester reaction at high curing temperatures.  相似文献   

18.
This study describes the crucial role played by acrylic resin and curing agents in the gloss reduction of low temperature curable hybrid powder coatings. The incompatibility of the acrylic resin with the primary (epoxy/polyester) resins induces a two-phase morphology and initiates the formation of micro-structured surface. DSC measurements on various mixtures reveal the relative reactivity and the role of curing agents in the gloss reduction. These results indicate that the optimization of relative reactivity and compatibility is required to achieve low gloss coatings at low curing temperature. In addition, the gloss level is strongly affected by extruding conditions. These experimental results give a possibility to develop matt and semi-matt low temperature curable powder coatings.  相似文献   

19.
The effects of reactive poly(vinyl acetate)‐block‐poly(methyl methacrylate) (PVAc‐b‐PMMA) and poly(vinyl acetate)‐block‐polystyrene (PVAc‐b‐PS) as low‐profile additives (LPA) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester resins (UP) during the cure at 30°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerizations, using polymeric peroxides (PPO) as initiators. Depending on the LPA composition and molecular weight, the reactive LPA could lead to a reduction of cyclization reaction for UP resin during the cure, and would be favorable for the decrease of intrinsic polymerization shrinkage after the cure. The experimental results have been explained by an integrated approach of measurements for the static phase characteristics of the styrene (ST)/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), optical microscopy (OM), and image analysis. Based on the Takayanagi mechanical model, factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts have been explored. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 967–979, 2006  相似文献   

20.
The curing reaction of four synthezized and five commercial unsaturated polyester resins were characterized by low-resolution pulse 1H-NMR and rheological measurements. The rheological measurements were done both by steady shearing flow and oscillatory shearing flow measurements. For the synthesized resins, which did not contain any inhibiting, these methods were quite comparable when measuring the gel time. Differences in measured gel times could be seen in the commercial resins. We concluded that the time taken from low-resolution pulse 1H-NMR measurements was not actually the gel time, but the time at which the resins go from the microgel formation stage to the transition stage. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 671–680, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号